Build Spec Tools for CPU2006 Benchmark

CPU2006 is an old obsolete benchmark. But in modern days we may still need to build and run it. The biggest problem is usually in building the tools needed by benchmark itself, called spec tools.

Below are the steps I used to build spec tools for AArch64 (64bit ARM) and RISC-V 64 on Ubuntu OS (22.04 and 23.04).

  • Install Fortran compiler, sudo apt install gfortran
  • Obtain CPU2006 install ISO image (need license)
  • Untar and install the source tree (install_archives/cpu2006.tar.xz)
  • cd cpu2006/tools/src
  • obtain and update all the config.guess and config.sub files with the latest ones
wget -O config.guess 'https://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD'
wget -O config.sub 'https://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD'

Once build is done, copy the attached config files below to under config/ directory and run with them. For example,

runspec --config ubuntu_riscv64 --action=setup int fp
runspec --config ubuntu_aarch64 --noreportable --size=test --iterations=1 mcf gcc
runspec --config ubuntu_aarch64 --size=ref --iterations=1 int fp

Attached files:

How to build/run Android Cuttlefish emulator on AWS

Background

Cuttlefish is new virtual-machine based Android emulator.  Earlier I have written  an article on how to build/run it on PC and ARM64 machines.  Towards the end of 2019, AWS has introduced a1.metal instance which allows KVM to run on their ARM64 machines.  It opens the possibility of running cuttlefish on AWS (which itself opens a lot of possibilities!)

The steps are similar to those I mentioned before.  This article summarizes them here specifically for AWS a1.metal instance, running Ubuntu 19.10.

Build AOSP cuttlefish images on x86_64

This step is done on PC, while all the rest steps are done on AWS a1.metal instance.

  • Refer to https://source.android.com/setup/build/building to set up your host machine
  • Check out the source from master and build distribution packages, which will be transferred to a1.metal instance later.  This step takes very loooong time.
mkdir cuttlefish
repo init -u https://android.googlesource.com/platform/manifest
repo sync -j8
source build/envsetup.sh
lunch aosp_cf_arm64_phone-userdebug
make dist

If you like to download from a branch and like to download as little as possible, the following command do so with android10-gsi branch without git history.

repo init --depth=1 -u https://android.googlesource.com/platform/manifest -b android10-gsi
repo sync -f --force-sync --no-clone-bundle --no-tags -j$(nproc)

Setup AWS a1.metal

Start an Ubuntu 19.10 instance on a1.metal.  First,  we install GUI for better debugging and viewing. 

sudo apt-get update -y 
sudo apt-get install lxde xrdp -y
sudo passwd ubuntu

Setup to run x86_64 binaries

Many tools (e.g., cros_vm) in cuttlefish are still built as x86_64 binaries, not as arm64.  Current solution is to use qemu-user to run those binaries (*ouch!*).  As such, we set up x86_64(amd64) as the secondary architecture on a1.metal.

  • Override /etc/apt/sources.list file with the following content
deb [arch=arm64,armhf] http://ports.ubuntu.com/ubuntu-ports eoan main restricted universe multiverse
deb [arch=arm64,armhf] http://ports.ubuntu.com/ubuntu-ports eoan-updates main restricted universe multiverse
deb [arch=arm64,armhf] http://ports.ubuntu.com/ubuntu-ports eoan-backports main restricted universe multiverse
deb [arch=arm64,armhf] http://ports.ubuntu.com/ubuntu-ports eoan-security main restricted universe multiverse
deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ eoan main restricted universe multiverse
deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ eoan-updates main restricted universe multiverse
deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ eoan-backports main restricted universe multiverse
deb [arch=amd64] http://archive.ubuntu.com/ubuntu/ eoan-security main restricted universe multiverse
  • Install qemu-user-static and add amd64 secondary architecture
sudo apt install qemu-user-static
sudo dpkg --add-architecture amd64
sudo apt install libc6:amd64
  • After this you should be able to run simple x86_64 binaries such as “cat”.
    • scp over “cat” program from your x86_64 linux machine
    • it should run!

Build and install cuttlefish-common package

  • install packages needed for build
sudo apt install dpkg-dev
sudo apt install cdbs config-package-dev debhelper
  • Download and build
mkdir cuttlefish-common
cd cuttlefish-common
git clone https://github.com/google/android-cuttlefish.git
cd android-cuttlefish
dpkg-buildpackage --no-sign
  • Install
sudo apt install bridge-utils dnsmasq-base f2fs-tools libarchive-tools libfdt1 libwayland-client0 net-tools python2
sudo dpkg -i ../cuttlefish-common_0.9.13_arm64.deb

Setup cuttlefish for running

  • copy (scp) the following  the files from x86_64 PC host:
out/dist/aosp_cf_arm64_phone-img-eng.jsun.zip
out/dist/cvd-host_package.tar.gz
  • untar cvd-host_package.tar.gz to ~/cuttlefish/host directory
  • unzip the zip file to ~/cuttlefish/image directory
  • Add user to proper groups before running; power off machine; then power on again. 
sudo usermod -aG kvm $USER
sudo usermod -aG cvdnetwork $USER

Run Cuttlefish

You have 2 choices to view the screen of emulated Android device:

  1. Use remote desktop and view screen via local VNC connection to Cuttlefish emulator
  2. Use a web browser and view the screen via remote WebRTC connection

View via Local VNC

  • Start a remote desktop viewer and connect to your EC2 a1.metal instance (Note: you need to open port 3389)
  • Below steps are running on remote EC2 a1.metal instance via remote desktop
  • Start a LXTerminal and run the following commands to start cuttlefish
export ANDROID_PRODUCT_OUT=~/cuttlefish/image/
export ANDROID_HOST_OUT=~/cuttlefish/host/
export PATH=$PATH:$ANDROID_HOST_OUT/bin
launch_cvd -decompress_kernel=true
  • Start browser and download VNC viewer
    • download tightvnc viewer (jar file): https://www.tightvnc.com/download.php
    • install java if not done yet: sudo apt install openjdk-11-jre
  • Start a second LXTerminal and run this command : java -jar tightvnc-jviewer.jar
    • Please use 127.0.0.1 as IP address and 6444 as port number
  • To stop cvd, run stop_cvd

View via WebRTC

  • Note you need to enable port 8443 on EC2 a1.metal instance
  • On EC2 instance run
launch_cvd -start_webrtc -webrtc_public_ip=`curl http://169.254.169.254/latest/meta-data/public-ipv4` -decompress_kernel=true
  • On local PC, start a browser on local machine, and connect via “https://<public IP>:8443”

As of writing today (4/5, 2020), the WebRTC method is not working yet.  It shows a black screen.

How to Build/Run Android Cuttlefish Emulator on PC/ARM64

Cuttlefish is new virtual-machine based Android emulator. It uses virtio devices instead of emulated devices as in original Android emulator.   As such, it needs lighter VM support (to the extent it can run on ARM64 host), unlike Android Emulator which requires heavily modified QEMU to emulate various devices.  The virtio architecture can potentially offer better performance as well.

Refer to  a slide deck on cuttlefish.  Or find a local copy of it at here.

Many thanks to Alistair Delva from Google, who provided many technical guidance in going through this exercise.

How to Build/Run Cuttlefish on PC (X86_64)

My host Ubuntu 18.04.  Refer to https://source.android.com/setup/build/building

Build and install cuttlefish-common package

git clone https://github.com/google/android-cuttlefish.git 
cd android-cuttlefish
dpkg-buildpackage --no-sign
  • Install :
dpkg -i  ../cuttlefish-common_0.9.9_amd64.deb
  • it requires dnsmasq-base and a few other packages; install them as requested
  • Check status  with  /etc/init.d/cuttlefish-common status

Build cuttlefish

  • Checkout AOSP pie-gsi branch.
repo init -u https://android.googlesource.com/platform/manifest -b pie-gsi repo sync -j 8
source build/envsetup.sh
lunchaosp_cf_x86_64_phone-userdebug
make

Run cuttlefish

  • Add user to proper groups before running; power off machine; then power on again.  (Strange, rebooting did not seem to work somehow).  You may need to run “sudo apt install qemu-kvm” if you get error, “group kvm doesn’t exist”.
sudo usermod -aG kvm $USER
sudo usermod -aG cvdnetwork $USER
  • Run: launch_cvd
  • Install tightvnc to view phone
    • download tightvnc viewer (jar file): https://www.tightvnc.com/download.php
    • install java if not done yet:  sudo apt install openjdk-11-jre
    • java -jar tightvnc-jviewer.jar  #use 127.0.0.1:6444
  • Run stop_cvd to kill the cvd

How to Build/Run Cuttlefish on ARM64

My ARM64 board is rockpro64, running ubuntu 18.04.

[on X86_64] Cross-build cuttlefish for ARM64

  • Similar as above, except build with a different target and with distribution packages
lunch aosp_cf_arm64_phone-userdebug
make dist

Note the following output files, which need to be copied to ARM64 host

out/dist/aosp_cf_arm64_phone-img-eng.jsun.zip
out/dist/cvd-host_package.tar.gz

[on X86_64] Configure and build arm64 kernel

You will need CONFIG_BINFMT_MISC.  Otherwise below step will fail.  Check /proc/sys/fs/binfmt_misc to be sure.

In addition, you will need a few other kernel configs, which according to Alistair are only supported in kernel after 4.9.  Here is the set of configs I added to rockpro64 default v5.2 kernel.

CONFIG_BINFMT_MISC=y
CONFIG_EVENTFD=y
CONFIG_VSOCKETS=y
CONFIG_VHOST_NET=m
CONFIG_VHOST_SCSI=m
CONFIG_VHOST_VSOCK=m
CONFIG_VHOST=m
CONFIG_VIRTIO_BLK_SCSI=m
CONFIG_VIRTIO_INPUT=m
CONFIG_VIRTIO_MMIO_CMDLINE_DEVICES=y
CONFIG_VIRTIO_VSOCKETS_COMMON=m
CONFIG_VIRTIO_VSOCKETS=m

In specific, here are the exact commands I used to build my rockpro64 kernel on my PC ubuntu:

git clone https://github.com/ayufan-rock64/linux-mainline-kernel.git
cd linux-mainline-kernel/
git checkout -b 5.2.0-1116-ayufan-js 5.2.0-1116-ayufan
vi arch/arm64/configs/rockchip_linux_defconfig    # add the above configs to the end
vi dev.mk   # BUG? change HOSTCC=aarch64-linux-gnu-gcc to HOSTCC=gcc
./dev-make kernel-image-and-modules
./dev-make kernel-package

Copy over the .deb package file to arm64 host and install with “dpkg -i <pkg file>” command.  Reboot afterwards.

[on ARM64] Setup to run x86_64 binaries

Do following as root user:

apt install qemu-user-static
dpkg --add-architecture amd64
[You may need to correct /etc/apt/source.list file here.  See an example at this link]
apt install libc6:amd64

After this you should be able to run simple x86_64 binaries such as “cat”.  Give it a try.

[on ARM64] Build and install cuttlefish-common package

This is similar to x86_64 case, except that you do this step on ARM64 host.

The following packages are needed before you can install cuttlefish-common:

apt install bridge-utils libarchive-tools libfdt1 python iptables

[on ARM64] Setup and run cuttlefish

  • copy the following  the files from x86_64 PC host:
out/dist/aosp_cf_arm64_phone-img-eng.jsun.zip
out/dist/cvd-host_package.tar.gz
  • untar and unzip them into 2 directories, say /home/jsun/work/cuttlefish/host and /home/jsun/work/cuttlefish/image
  • Add user to proper groups before running; power off machine; then power on again.  You may need to create kvm group first and make sure  /dev/kvm is read/writable by kvm group
sudo usermod -aG kvm $USER
sudo usermod -aG cvdnetwork $USER
  • Run the following commands to start cuttlefish
export ANDROID_PRODUCT_OUT=/home/jsun/work/cuttlefish/image/
export ANDROID_HOST_OUT=/home/jsun/work/cuttlefish/host/
export PATH=$PATH:$ANDROID_HOST_OUT/bin
launch_cvd -decompress_kernel=true
  • The rest are similar to x86_64 case

Appendix – Install Ubuntu Desktop on ARM64

Many ARM64 ubuntu distros are minimal or server, which means no desktop included.  It is easy to install one.  However, without a few key steps (see first a few commands below),  you can easily get some headaches.

Below are the commands I used to install Xubuntu on rockpro64, starting from their minimal Ubuntu 18.04 distro.

  1. Download Ubuntu 18.04 minimal img for SD card (refer to this page),
  2. Copy to SD card
dd if=./bionic-minimal-rockpro64-0.8.3-1141-arm64.img of=/dev/sdb bs=4M
  1. Use parted or gparted to expand /dev/sdb7 to take over whole SD space
  2. Boot up rockpro64:
sudo su
locale-gen
localectl set-locale LANG="en_US.UTF-8"
apt update
apt install -y xubuntu-desktop