
Abstract—People increasingly put more than one OSes into 
their computers and devices like mobile phones. Multi-boot 
and virtualization are two common technologies for this 
purpose.  In this paper we promote a new approach called 
OS switching.  With OS switching, multiple OSes time-share 
the same computer cooperatively.  A typical implementation 
can reuse an OS’s suspend/resume functionality with little 
modification.  The OS switching approach promises fast 
native execution speed with shorter switching time than 
traditional multi-boot approach. We describe the design of 
OS switching as well as our implementation with Linux and 
WinCE, and evaluate its performance. 

1. Introduction 

Many people nowadays run multiple OSes on their 
computers. For example, developers may need to test 
their software on different OSes and/or on different 
versions of the same OS. Users sometimes find that 
two pieces of software that they like require different 
OSes.  

In mobile device paradigm, we are also seeing more 
and more applications/systems using multiple OSes. 
For example, VirtualLogix (formerly Jaluna) [1] 
provides a solution for phones that integrates a real-
time communication OS with a Linux OS. The recent 
announcement of OSTI [2] also indicated a trend of 
having multiple OSes on one mobile device. 

Up until now there are two main approaches to 
supporting multiple OSes: multi-boot and virtualization 
[3]. With multi-boot systems, a user installs multiple 
OSes into disjoint disk partitions along with a multi-
OS-aware boot loader. During the boot up time, the 
boot loader asks the user to select the OS to boot [4]. 
To run an OS different from the current OS, the user 
exits the current OS and reboot into the other OS 
through the boot loader. While switching to another OS 
takes a long time, the approach has the advantage of 
each OS running directly on hardware without any 
modification and running with full speed and full 
access to hardware resources. 

Virtualization technology has been very popular 
recently (see [5][6][7][8] as examples). In virtualization, 

a user typically installs Virtual Machine (VM) monitor 
and related management software. With the help of 
VM software the user can further install several 
different OSes onto the same computer. The VM 
software can typically run multiple OSes concurrently. 
For example, with VMWare Workstation, each OS has 
its display shown as a window on the host OS. 
Switching from one running OS to another is almost 
equivalent to switching between GUI applications. 
However, virtualization technology typically suffers 
from degradation in performance [5]. More 
importantly, it typically requires a considerable amount 
of work to providing a virtualizing and monitoring 
layer, and sometimes to modify the existing OS and its 
device driver code.  

In this paper we promote an alternative approach, 
called OS switching. In OS switching, multiple OSes 
time-share the same computer cooperatively. A 
straightforward implementation of OS switching can 
make use of the suspend/resume features that already 
exist in modern OSes. With OS switching, at any given 
time, only one OS is active. When the user wants to 
switch to a different OS, the currently active OS is 
suspended to memory, and the target OS is resumed 
from a previously suspended state and becomes the 
new active OS. The OS switching approach promises 
native execution speed and full hardware access by all 
OSes, and offers relatively fast switching speed. 
Implementing OS switching requires only minor 
modifications to existing OS code, plus relatively 
simple code for controlling switching between OSes. 

2. OS Switching with Suspend/Resume 

2.1. Overview 

An OS switching system has multiples OSes 
installed on the persistent storage (e.g. disks or flash 
drives). To differentiate from the term “guest OS” used 
in virtualization technology, we call each of these OSes 
a tenant OS. More than one tenant OSes can be loaded 
into disjunctive memory regions and can boot up one 
by one. However, at any time there is only one tenant 
OS actively running, and this OS is called the current 
active OS. The active OS owns completely the whole 
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system except for the portions of memory and disk 
reserved for other tenant OSes. 

An active OS goes into dormant state through OS 
switching. OS switching is typically initiated by the 
end user (e.g., by pushing a switching button). It is also 
possible that OS switching is initiated through software 
triggered events.  

After an OS switching is initiated, the current active 
OS (or outgoing OS in this context) performs necessary 
preparation, typically including saving necessary states 
for later resumption and putting hardware into a known 
and agreed-upon states for the next OS (or incoming 
OS). 

Once the outgoing OS finished its preparation, an 
actual switch will happen. This step can be simply 
jumping to the resume path of the incoming OS. For 
OSes that support Memory Management Unit (MMU), 
however, this step may involve tearing down the 
outgoing OS’ page mapping and setting up the new 
page table for the incoming OS. 

The last step in OS switching is to restore incoming 
OS into an actively running state. This step involves 
retrieving states saved in system RAM and re-initialize 
hardware into a working state. Device drivers and 
application processes are re-activated, and system will 
continue to run from the state when the OS was last 
time suspended. 

The four steps in OS switching is illustrated in 
Figure 1. 

2.2. Suspend and resume in modern OSes 

Most modern operating systems with advanced 
power management support a power-saving state where 
all hardware (including CPU and peripherals) are 
powered off except for the system RAM. In Windows 
this state is called standby state. Mac OS X calls it 
sleep state, while Linux refers to it as suspend-to-RAM 
(STR). When a computer performs suspend-to-RAM 
operation, the OS stops applications, drivers and kernel 
in order, and stores all necessary information in the 

RAM. The system then enters a low-power state while 
the RAM enters a low power self-refreshing state. Most 
of other hardware devices are turned off to save 
energy. When the system resumes, it retrieves 
operating state from memory and restores the whole 
system to the state when it was suspended. 

Different OSes implement STR differently. The 
following text describes general steps involved in a 
typical suspend/resume process.  

Suspend Process: 
1. Suspend initiated 
2. Applications are notified of the imminent suspend 

operation through callbacks. Certain applications 
may save data, or complete networking 
operations, etc.  

3. Subsystems (such as file system, networking, 
daemons) are notified of the imminent suspend 
operation. For example, NFS domain may close 
its connection and save the connection 
information for later resumption. 

4. The suspend routines in device drivers are called. 
Such suspend routines typically do two things: 
disabling its service to higher-level software and 
turn off the device (e.g., flushing and disabling 
DMA, disabling interrupts). Sometimes the 
suspend routine may also save certain information 
for later resumption.  

5. Save system core state, including bus controller 
and CPU register states. 

6. Turn off power to all hardware except system 
RAM, and enter sleep mode. 

Resume process: 
1. Resume is initiated through some pre-configured 

external events (pushing button, RTC timer 
expiration, etc). CPU control typically jump-starts 
from a pre-set address. 

2. Restore CPU and system core states. 
3. Invoke device drivers’ resume() functions. The 

device driver resume functions typically enable 
the devices and make their services available for 
higher-level code.  

4. Invoke the resume() functions of subsystems. 
5. Notify applications of the resumption of 

operation. In Unix-like OSes, this can be achieved 
through signals. 

6. System resumes full operation. 

2.3. OS switching based on suspend/resume 

If all tenant OSes support the suspend-to-RAM 
feature, we can re-use a large part of the 
suspend/resume code to implement OS switching. 
Conceptually, instead of turning off the power at the 
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last step of the suspend process, we simply jump to 
the resumption path of the incoming OS. 

Figure 2 shows the control flow of suspend/resume 
based OS switching. 

If we are switching between two instances of the 
same OS with the same version, we are guaranteed that 
the hardware state at step 7 is exactly what the 
incoming OS expects. If we are switching between 
different OSes, however, the hardware states may be 
different from what the incoming OS expects. In that 
case, some form of “state adaptation” is needed (see 
section 2.5).  

We implemented suspend/resume based OS 
switching in following environments: 

o Linux-Linux switching on Sandgate 2P, an Intel 
PXA270 (ARM9) based handheld prototype 
device [10]. 

o Linux-WinCE switching on Sandgate 2P 
Detailed implementation notes and performance 

data can be found in section 3. In the rest of this 
section, we will assume that there are two tenant OSes 
and discuss in general several other design issues.  

2.4. Loading and booting of subsequent OSes 

While the first OS in an OS switching system can 
be loaded and booted as usual (except that the loader 
and the OSes needs to be modified so that the OSes 
live in restricted memory regions), there are several 
design choices for loading and booting subsequent 
OSes: 

1) The boot loader loads both OSes into RAM. 
One OS boots first and the second OS boots 
when it is selected to run for the first time. 

2) The boot loader loads and boots the first OS. 
From the first OS an application loads the 
second OS. The second OS boots up when it is 
activated for the first time. 

3) Boot loader loads and boots the first OS. From 
the first OS, an application installs the RAM 
content of the second OS previously captured 
when it went into suspended state.  

Both methods 1) and 2) require special code that 
handles the booting of the second OS. Typically the 
loader and the OS mutually agree on the start-up 
system state. When for the first time we switch to the 
second tenant OS, the hardware state is usually 
different from what the loader would have set to. For 
example when Linux boots on ARM it expects MMU 
is turned off and first serial port is turned on. It also 
expects kernel command line arguments passed in 
through register r2. In order to boot the second OS 
correctly, we can either set the hardware states in the 
switcher so that they conform to the protocol, or we 
can modify the boot-up code in the second OS. We like 
the first approach as it is less intrusive in terms of 
changes to tenant OSes, and is more reusable when we 
switch among multiple different OSes. 

Method 3) avoids the above problem. However, it 
requires a tool for capturing the memory content of the 
second OS in suspended state. In addition, the memory 
image, even when compressed, may be too large for 
systems where persistent storage space is scarce. 

2.5. Switching 

In theory, the actual control transfer is as simple as 
a jump instruction from the outgoing OS to the 
incoming OS. 

In reality, this process is very complicated. The 
actual suspend process varies quite a bit for different 
CPUs, systems and OSes. In some OSes there are 
multiple suspend states. For example, Linux on 
VMPlayer has two suspend states corresponding to 
ACPI’s S1 and S4 states [11]. 

Therefore, the first implementation decision is to 
choose a suspend path as the default OS switching 
path. Different suspend path puts hardware into 
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different suspend states and have different resume 
points. For example, Linux on VMPlayer support 
“standby” state, a shallower power saving mode where 
CPU context, including MMU and program counter, 
are preserved during suspend. Resume starts from the 
last instruction that puts the CUP into suspend state. By 
comparison, Linux on Sandgate 2P supports “memory” 
state, a deeper power saving mode where all CPU 
context are lost. The resumption point is remembered 
in a non-volatile register and CPU resumes in physical 
addressing mode. 

As a result the switcher would need to manage all 
these differences and ensure the control transfer happen 
smoothly among tenant OSes. The OS switcher 
typically performs: 

1. Saving any contexts that were assumed to persist 
during normal suspend but will be lost during OS 
switching. 

2. Tearing down current MMU mapping and 
switching to physical addressing mode.  If 
incoming OS resumes from virtual addressing 
mode, setup MMU mapping for the incoming OS. 

3. Restoring any context for the incoming OS that 
were assumed to persist during normal suspend 
but was lost during OS switching. 

3. Implementation and Performance 

In this section, we describe our implementation of 
OS switching, and evaluate and analyze OS switching 
performance. As mentioned earlier, we have 
implemented two prototypes. In this section we focus 
on the Linux-WinCE Sandgate 2P prototype. 

3.1. Loading and booting 

In our Linux-WinCE Sandgate 2P prototype, we 
chose the first approach for subsequent tenant OS 
loading and booting, i.e., we modified the WinCE 
loader, eboot, to load both OSes into RAM. Eboot sets 
up the environment for WinCE to boot up first. When 
for the first time we switch from WinCE to Linux, the 
OS switcher sets up proper hardware state so that 
Linux can boot up successfully. Special setting include 
turning off MMU, turning on serial port, and preparing 
kernel boot arguments. 

3.2. Switching on the Linux side 

Our Linux kernel base is 2.6.16. Intel has supplied 
board specific support for Sandgate 2P. In this 
implementation, Linux supports two power saving 
states, “standby” and “memory”. We decided to modify 
the suspend-to-memory execution path for OS 
switching purpose.  

A side button on the prototype device is designated 
as the OS switching button. The keypad driver sends a 
signal to the APM daemon when a button pressing event is 
detected. Upon receiving this signal, the APM daemon 
performs the suspend process, including calling each 
driver’s suspend() function. At the end of this process, 
instead of going into suspended state, the daemon 
jumps into the switcher and calls the switching 
function. In section 3.4 we will discuss in detail what 
the switcher does. 

3.3. Switching on WinCE side 

WinCE supports several power saving states 
including idle and suspend. Unfortunately the WinCE 
BSP we obtained from vendor does not fully support 
them. While some drivers have their own 
suspend/resume routines, some do not. In addition, 
there is no system-wide suspend/resume routines. 

Our implementation effort starts with supplying 
those suspend/resume functions for various drivers 
including display driver. Similar to the Linux case, 
when the keypad driver detects an OS-switching button 
pressing event, it changes the system power state into 
suspend state, which starts the standard suspend 
process. The standard suspend process invokes the 
OEMPowerOff() function after all devices are 
suspended. The OEMPowerOff() function in turn 
invokes our real OS switching function.  

3.4. Implementation of OS switcher 

For practicality reasons, OS switcher is 
implemented inside eboot. Thus it also uses eboot’s 
address mapping, which is different from either 
Linux’s or WinCE’s. 

When we switch from Linux to WinCE, the 
switcher will save the CPU context, including MMU, 
general registers, system control registers, etc. It will 
then restore WinCE’s CPU context. Since WinCE 
suspend/resume is not complete, the OS switcher 
performs additional saving and restoring for peripheral 
devices such as LCD, audio, etc. 

When we switch from WinCE to Linux, the OS 
switcher performs similar steps. Again, for WinCE, the 
OS switcher saves additional context for peripheral 
devices. This saving is necessary as states for 
peripheral devices presumably will be altered once 
Linux becomes active. 

3.5. Evaluation 

In this section we present and discuss timing data 
for OS switching. The numbers presented in this 
section are obtained through instrumentation of Linux 
(2.6.16 kernel) and WinCE 5.0 source code. Since we 



 

 

didn’t have access to the full source code of WinCE 
5.0, we could only measure suspend and resume time 
costs of major device drivers for WinCE side. 

Table 1 breaks down the costs for switching out of 
and into Linux. Since process freeze/thaw and device 
suspend/resume times dominate the total cost, we 
omitted listing the costs of other individual steps. Note 
that the costs for freezing and thawing processes 
depend on those specific processes. In our experiment 
we only had a few basic processes running. As we can 
see from the table, the resume cost in Linux is much 
higher than the suspend cost, and this resume cost is 
dominated by the cost for resuming devices. Overall, 
the resuming process takes close to 1.4 seconds, and 
the total time for switching from a Linux OS to another 
Linux OS is slightly over 1.4 seconds (Linux suspend 
time plus Linux resume time). 

Table 2.  further breaks down the suspend/resume 
costs of individual Linux device drivers. Note that the 
resuming costs of the PCMCIA driver, the frame buffer 
driver, and the WiFi driver, dominates the total cost of 
device resumption. 

On WinCE side, excluding GWES’ (Graphics, 
Windowing and Events Subsystem) asynchronous 
handling of power on/off events, almost all the costs of 
OS switching is in device suspend and resume. Table 3 
shows the suspend/resume costs of four drivers that 
were used on the WinCE side of the prototype: the 
drivers for display, touch screen, keypad, and audio. 
The total suspend time for the drivers is about 188ms, 
and the total resume time is about 341ms. We can thus 
infer that the time for Linux-to-WinCE switch is 

around 0.3-0.4 second, while the time for a WinCE-to-
Linux switch is around 1.6 seconds. 

We also measured user perceived switching time, 
defined as the time from display going into blank in the 
outgoing OS, to the time display resumes in the 
incoming OS. It is measured as the time between the 
end of display driver suspend on one side, to the end of 
the display driver resume on the other side. In our 
setup, the user perceived switching time from WinCE 
to Linux is about 398.8ms, while the user perceived 
switching time from Linux to WinCE is about 
328.3ms.  

4. Related Work 

The idea of using suspend/resume (and also 
shutdown/reboot) to support multiple OSes first 
appeared in a patent [9] by Shimotono. The patent 
generally assumes PC-like computing systems where 
BIOS performs the major part of switching. The 
outgoing OS completely shuts off the whole system 
and the incoming OS will start from reset state with a 
flag to indicate it is the resumption instead of a regular 
booting. From OS perspective there is no difference 
between a real suspend/resume and an OS switching.  

Clearly this scheme does not work for non-PC 
systems where there is no BIOS standard and power 
management standard (such as APM or ACPI). In this 
paper we extend and broaden this idea to a more 
general OS switching approach where tenant OSes 
work cooperatively to time-share the same computing 
device. Shimotono’s patent is a special case where all 
tenant OSes must suspend and shut off all hardware 
(even including CPU) completely before a switching 
can happen on the rebooting path in BIOS. In this 
paper we demonstrate that multiple OSes can suspend 
differently into different states and adapt through the 
OS switcher with a flexible scheme. Another directly 
related approach is the multi-boot approach [4]. Like 
OS switching approach, hard disks or permanent 
storage are partitioned among tenant OSes, and there is 
only one active OS at any time. Unlike OS switching 
approach, the active OS owns the whole system RAM 
instead sharing with other tenant OSes. However, OS 
switching offers much faster switching time.  

Suspend Steps Time Used 
(us) 

Resume Steps Time Used 
(us) 

Freeze processes 8500 Thaw processes 3226 

Device suspend 5845 Device resume 1384313 

Other 32 Other 4796 

Total 14377 Total 1392335 

 

Table 1. Breaking down OS switching time (Linux) 

Device Suspend Time 
(us) 

Resume Time 
(us) 

Display 153829 276103 

Touchscreen 3439 4380 

Keypad 3414 57316 

Audio 27500 2862 

Total 188182 340661 

Table 3. Suspend/resume cost of WinCE device drivers 

Driver Suspend 
Time (us) 

Resume 
Time (us) Comment 

ak4650-ts 2 3036 Touchscreen 

ak4650-core 325 165 core for TS and audio 

hostap_cs 1378 254231 Wifi driver 

pxa2xx-pcmcia 26 769261 PCMCIA driver 

pxa2xx-fb 3770 344926 Frame buffer 

pxa2xx-ac97 328 12683 AC97 controller 

Other drivers 16 11  

total 5845 1384313  

Table 2. Suspend and resume cost of Linux device drivers 



 

 

Compared with virtualization technologies, OS 
switching lacks concurrency and hence is not suitable 
for application scenarios where multiple OSes need to 
run concurrently (for example, telnet from one tenant 
OS to another). In addition, OS switching depends on 
corporation among OSes and is consequently less 
robust against faulty OS implementations. On the other 
hand, OS switching offers native execution speed, 
which gives better performance than virtualization 
(especially traditional full virtualization).  In addition, 
many application scenarios (such as multi-OS driver 
development) require native hardware access which is 
not possible in virtualization. 

Compared with para-virtualization approaches such 
as Xen [5], OS switching requires less kernel 
modification. For example, our kernel patch for 
Linux/WinCE switching on ARM changes, excluding 
device driver changes, 26 lines of WinCE code and 139 
lines of Linux, plus around 60 assembly instructions. In 
addition, OS switching only needs to change so-called 
BSP part of kernel, not as intrusive as other para-
virtualization approaches. Because of this attribute, we 
are able to enable Linux-WinCE switching even though 
we don’t have the full source of WinCE kernel. 

The implementation of OS switching closely 
resembles cooperative VM approach in that all kernels 
have privileged access to the whole system and the 
cooperative relation among OS kernels. Cooperative 
Linux [12] modifies Linux kernel to run inside the host 
OS’s kernel. The guest Linux kernel runs as a process 
on top of the host OS. MMU is time-shared between 
the host kernel and guest Linux kernel. Peripheral 
hardware access is virtualized through host OS’s 
support. Jaluna’s OSware [1] integrates two or more 
OSes and multiplexes hardware interrupts and CPU 
usage among them. Hardware resources are exclusively 
partitioned among OSes. Virtualized hardware access 
is possible if the owner OS exports the resource and the 
client OS has the virtual driver which knows how to 
talk to the owner OS. Compared with cooperative VM 
approach, OS switching approach trades multi-OS 
concurrency for implementation simplicity and full 
native access to hardware. 

5. Summary and Conclusion 

OS switching enables multiple OSes time-share the 
same computer in a cooperative manner. Its 
implementation typically reuses suspend/resume 
functionalities already existing in modern OSes and 
result in little modification to existing kernels.  
Compared with multi-boot approach, OS switching 
offers much faster switching time.  Compared with 
virtualization approach OS switching offers simplicity, 
native execution speed and native hardware access. 

In this paper we generalize the OS switching notion 
and present our study on its design, implementation, 
and performance.  Despite some of its limitations we 
believe OS switching is a useful alternative to multi-
boot approach and virtualization approach for many 
application scenarios where simplicity, performance, 
native hardware access and switching time are 
important.  We would like to promote this approach 
and are hopeful to see wider applications of OS 
switching technology. 
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