
Abstract—People increasingly put more than one OSes into
their computers and devices like mobile phones. Multi-boot
and virtualization are two common technologies for this
purpose. In this paper we promote a new approach called
OS switching. With OS switching, multiple OSes time-share
the same computer cooperatively. A typical implementation
can reuse an OS’s suspend/resume functionality with little
modification. The OS switching approach promises fast
native execution speed with shorter switching time than
traditional multi-boot approach. We describe the design of
OS switching as well as our implementation with Linux and
WinCE, and evaluate its performance.

1. Introduction

Many people nowadays run multiple OSes on their
computers. For example, developers may need to test
their software on different OSes and/or on different
versions of the same OS. Users sometimes find that
two pieces of software that they like require different
OSes.

In mobile device paradigm, we are also seeing more
and more applications/systems using multiple OSes.
For example, VirtualLogix (formerly Jaluna) [1]
provides a solution for phones that integrates a real-
time communication OS with a Linux OS. The recent
announcement of OSTI [2] also indicated a trend of
having multiple OSes on one mobile device.

Up until now there are two main approaches to
supporting multiple OSes: multi-boot and virtualization
[3]. With multi-boot systems, a user installs multiple
OSes into disjoint disk partitions along with a multi-
OS-aware boot loader. During the boot up time, the
boot loader asks the user to select the OS to boot [4].
To run an OS different from the current OS, the user
exits the current OS and reboot into the other OS
through the boot loader. While switching to another OS
takes a long time, the approach has the advantage of
each OS running directly on hardware without any
modification and running with full speed and full
access to hardware resources.

Virtualization technology has been very popular
recently (see [5][6][7][8] as examples). In virtualization,

a user typically installs Virtual Machine (VM) monitor
and related management software. With the help of
VM software the user can further install several
different OSes onto the same computer. The VM
software can typically run multiple OSes concurrently.
For example, with VMWare Workstation, each OS has
its display shown as a window on the host OS.
Switching from one running OS to another is almost
equivalent to switching between GUI applications.
However, virtualization technology typically suffers
from degradation in performance [5]. More
importantly, it typically requires a considerable amount
of work to providing a virtualizing and monitoring
layer, and sometimes to modify the existing OS and its
device driver code.

In this paper we promote an alternative approach,
called OS switching. In OS switching, multiple OSes
time-share the same computer cooperatively. A
straightforward implementation of OS switching can
make use of the suspend/resume features that already
exist in modern OSes. With OS switching, at any given
time, only one OS is active. When the user wants to
switch to a different OS, the currently active OS is
suspended to memory, and the target OS is resumed
from a previously suspended state and becomes the
new active OS. The OS switching approach promises
native execution speed and full hardware access by all
OSes, and offers relatively fast switching speed.
Implementing OS switching requires only minor
modifications to existing OS code, plus relatively
simple code for controlling switching between OSes.

2. OS Switching with Suspend/Resume

2.1. Overview

An OS switching system has multiples OSes
installed on the persistent storage (e.g. disks or flash
drives). To differentiate from the term “guest OS” used
in virtualization technology, we call each of these OSes
a tenant OS. More than one tenant OSes can be loaded
into disjunctive memory regions and can boot up one
by one. However, at any time there is only one tenant
OS actively running, and this OS is called the current
active OS. The active OS owns completely the whole

Supporting Multiple OSes with OS Switching

Jun Sun1, Dong Zhou, Steve Longerbeam2

zhou@docomolabs-usa.com
DoCoMo USA Labs

3240 Hillview Ave., Palo Alto, CA 94304, USA

1. Work conducted when author was with DoCoMo USA Labs.
He can be contacted via email: jsun@junsun.net.

2. Work conducted when author was with DoCoMo USA Labs.
He can be contacted via email: stevel@sklembedded.com.

system except for the portions of memory and disk
reserved for other tenant OSes.

An active OS goes into dormant state through OS
switching. OS switching is typically initiated by the
end user (e.g., by pushing a switching button). It is also
possible that OS switching is initiated through software
triggered events.

After an OS switching is initiated, the current active
OS (or outgoing OS in this context) performs necessary
preparation, typically including saving necessary states
for later resumption and putting hardware into a known
and agreed-upon states for the next OS (or incoming
OS).

Once the outgoing OS finished its preparation, an
actual switch will happen. This step can be simply
jumping to the resume path of the incoming OS. For
OSes that support Memory Management Unit (MMU),
however, this step may involve tearing down the
outgoing OS’ page mapping and setting up the new
page table for the incoming OS.

The last step in OS switching is to restore incoming
OS into an actively running state. This step involves
retrieving states saved in system RAM and re-initialize
hardware into a working state. Device drivers and
application processes are re-activated, and system will
continue to run from the state when the OS was last
time suspended.

The four steps in OS switching is illustrated in
Figure 1.

2.2. Suspend and resume in modern OSes

Most modern operating systems with advanced
power management support a power-saving state where
all hardware (including CPU and peripherals) are
powered off except for the system RAM. In Windows
this state is called standby state. Mac OS X calls it
sleep state, while Linux refers to it as suspend-to-RAM
(STR). When a computer performs suspend-to-RAM
operation, the OS stops applications, drivers and kernel
in order, and stores all necessary information in the

RAM. The system then enters a low-power state while
the RAM enters a low power self-refreshing state. Most
of other hardware devices are turned off to save
energy. When the system resumes, it retrieves
operating state from memory and restores the whole
system to the state when it was suspended.

Different OSes implement STR differently. The
following text describes general steps involved in a
typical suspend/resume process.

Suspend Process:
1. Suspend initiated
2. Applications are notified of the imminent suspend

operation through callbacks. Certain applications
may save data, or complete networking
operations, etc.

3. Subsystems (such as file system, networking,
daemons) are notified of the imminent suspend
operation. For example, NFS domain may close
its connection and save the connection
information for later resumption.

4. The suspend routines in device drivers are called.
Such suspend routines typically do two things:
disabling its service to higher-level software and
turn off the device (e.g., flushing and disabling
DMA, disabling interrupts). Sometimes the
suspend routine may also save certain information
for later resumption.

5. Save system core state, including bus controller
and CPU register states.

6. Turn off power to all hardware except system
RAM, and enter sleep mode.

Resume process:
1. Resume is initiated through some pre-configured

external events (pushing button, RTC timer
expiration, etc). CPU control typically jump-starts
from a pre-set address.

2. Restore CPU and system core states.
3. Invoke device drivers’ resume() functions. The

device driver resume functions typically enable
the devices and make their services available for
higher-level code.

4. Invoke the resume() functions of subsystems.
5. Notify applications of the resumption of

operation. In Unix-like OSes, this can be achieved
through signals.

6. System resumes full operation.

2.3. OS switching based on suspend/resume

If all tenant OSes support the suspend-to-RAM
feature, we can re-use a large part of the
suspend/resume code to implement OS switching.
Conceptually, instead of turning off the power at the

OS switcher

1. Initiate switching

2. Suspend

3. Switching

4. Resume

OS #2

Figure 1. OS Switching Overview

OS #1

last step of the suspend process, we simply jump to
the resumption path of the incoming OS.

Figure 2 shows the control flow of suspend/resume
based OS switching.

If we are switching between two instances of the
same OS with the same version, we are guaranteed that
the hardware state at step 7 is exactly what the
incoming OS expects. If we are switching between
different OSes, however, the hardware states may be
different from what the incoming OS expects. In that
case, some form of “state adaptation” is needed (see
section 2.5).

We implemented suspend/resume based OS
switching in following environments:

o Linux-Linux switching on Sandgate 2P, an Intel
PXA270 (ARM9) based handheld prototype
device [10].

o Linux-WinCE switching on Sandgate 2P
Detailed implementation notes and performance

data can be found in section 3. In the rest of this
section, we will assume that there are two tenant OSes
and discuss in general several other design issues.

2.4. Loading and booting of subsequent OSes

While the first OS in an OS switching system can
be loaded and booted as usual (except that the loader
and the OSes needs to be modified so that the OSes
live in restricted memory regions), there are several
design choices for loading and booting subsequent
OSes:

1) The boot loader loads both OSes into RAM.
One OS boots first and the second OS boots
when it is selected to run for the first time.

2) The boot loader loads and boots the first OS.
From the first OS an application loads the
second OS. The second OS boots up when it is
activated for the first time.

3) Boot loader loads and boots the first OS. From
the first OS, an application installs the RAM
content of the second OS previously captured
when it went into suspended state.

Both methods 1) and 2) require special code that
handles the booting of the second OS. Typically the
loader and the OS mutually agree on the start-up
system state. When for the first time we switch to the
second tenant OS, the hardware state is usually
different from what the loader would have set to. For
example when Linux boots on ARM it expects MMU
is turned off and first serial port is turned on. It also
expects kernel command line arguments passed in
through register r2. In order to boot the second OS
correctly, we can either set the hardware states in the
switcher so that they conform to the protocol, or we
can modify the boot-up code in the second OS. We like
the first approach as it is less intrusive in terms of
changes to tenant OSes, and is more reusable when we
switch among multiple different OSes.

Method 3) avoids the above problem. However, it
requires a tool for capturing the memory content of the
second OS in suspended state. In addition, the memory
image, even when compressed, may be too large for
systems where persistent storage space is scarce.

2.5. Switching

In theory, the actual control transfer is as simple as
a jump instruction from the outgoing OS to the
incoming OS.

In reality, this process is very complicated. The
actual suspend process varies quite a bit for different
CPUs, systems and OSes. In some OSes there are
multiple suspend states. For example, Linux on
VMPlayer has two suspend states corresponding to
ACPI’s S1 and S4 states [11].

Therefore, the first implementation decision is to
choose a suspend path as the default OS switching
path. Different suspend path puts hardware into

1. Initiate switching

2. Notify applications

3. Notify OS subsystems

4. Call driver suspend routine

5. Save system core state

6. Select next active OS

7. Restore system core state

8. Invoke driver resume routing

9. Resume OS subsystems

10. Notify applications for resumption

11. System resumes full operation

OS #1

OS #2

OS Switcher

Control transfer

Control transfer

Figure 2. Flow of control in suspend/resume based
implementation of OS switching

different suspend states and have different resume
points. For example, Linux on VMPlayer support
“standby” state, a shallower power saving mode where
CPU context, including MMU and program counter,
are preserved during suspend. Resume starts from the
last instruction that puts the CUP into suspend state. By
comparison, Linux on Sandgate 2P supports “memory”
state, a deeper power saving mode where all CPU
context are lost. The resumption point is remembered
in a non-volatile register and CPU resumes in physical
addressing mode.

As a result the switcher would need to manage all
these differences and ensure the control transfer happen
smoothly among tenant OSes. The OS switcher
typically performs:

1. Saving any contexts that were assumed to persist
during normal suspend but will be lost during OS
switching.

2. Tearing down current MMU mapping and
switching to physical addressing mode. If
incoming OS resumes from virtual addressing
mode, setup MMU mapping for the incoming OS.

3. Restoring any context for the incoming OS that
were assumed to persist during normal suspend
but was lost during OS switching.

3. Implementation and Performance

In this section, we describe our implementation of
OS switching, and evaluate and analyze OS switching
performance. As mentioned earlier, we have
implemented two prototypes. In this section we focus
on the Linux-WinCE Sandgate 2P prototype.

3.1. Loading and booting

In our Linux-WinCE Sandgate 2P prototype, we
chose the first approach for subsequent tenant OS
loading and booting, i.e., we modified the WinCE
loader, eboot, to load both OSes into RAM. Eboot sets
up the environment for WinCE to boot up first. When
for the first time we switch from WinCE to Linux, the
OS switcher sets up proper hardware state so that
Linux can boot up successfully. Special setting include
turning off MMU, turning on serial port, and preparing
kernel boot arguments.

3.2. Switching on the Linux side

Our Linux kernel base is 2.6.16. Intel has supplied
board specific support for Sandgate 2P. In this
implementation, Linux supports two power saving
states, “standby” and “memory”. We decided to modify
the suspend-to-memory execution path for OS
switching purpose.

A side button on the prototype device is designated
as the OS switching button. The keypad driver sends a
signal to the APM daemon when a button pressing event is
detected. Upon receiving this signal, the APM daemon
performs the suspend process, including calling each
driver’s suspend() function. At the end of this process,
instead of going into suspended state, the daemon
jumps into the switcher and calls the switching
function. In section 3.4 we will discuss in detail what
the switcher does.

3.3. Switching on WinCE side

WinCE supports several power saving states
including idle and suspend. Unfortunately the WinCE
BSP we obtained from vendor does not fully support
them. While some drivers have their own
suspend/resume routines, some do not. In addition,
there is no system-wide suspend/resume routines.

Our implementation effort starts with supplying
those suspend/resume functions for various drivers
including display driver. Similar to the Linux case,
when the keypad driver detects an OS-switching button
pressing event, it changes the system power state into
suspend state, which starts the standard suspend
process. The standard suspend process invokes the
OEMPowerOff() function after all devices are
suspended. The OEMPowerOff() function in turn
invokes our real OS switching function.

3.4. Implementation of OS switcher

For practicality reasons, OS switcher is
implemented inside eboot. Thus it also uses eboot’s
address mapping, which is different from either
Linux’s or WinCE’s.

When we switch from Linux to WinCE, the
switcher will save the CPU context, including MMU,
general registers, system control registers, etc. It will
then restore WinCE’s CPU context. Since WinCE
suspend/resume is not complete, the OS switcher
performs additional saving and restoring for peripheral
devices such as LCD, audio, etc.

When we switch from WinCE to Linux, the OS
switcher performs similar steps. Again, for WinCE, the
OS switcher saves additional context for peripheral
devices. This saving is necessary as states for
peripheral devices presumably will be altered once
Linux becomes active.

3.5. Evaluation

In this section we present and discuss timing data
for OS switching. The numbers presented in this
section are obtained through instrumentation of Linux
(2.6.16 kernel) and WinCE 5.0 source code. Since we

didn’t have access to the full source code of WinCE
5.0, we could only measure suspend and resume time
costs of major device drivers for WinCE side.

Table 1 breaks down the costs for switching out of
and into Linux. Since process freeze/thaw and device
suspend/resume times dominate the total cost, we
omitted listing the costs of other individual steps. Note
that the costs for freezing and thawing processes
depend on those specific processes. In our experiment
we only had a few basic processes running. As we can
see from the table, the resume cost in Linux is much
higher than the suspend cost, and this resume cost is
dominated by the cost for resuming devices. Overall,
the resuming process takes close to 1.4 seconds, and
the total time for switching from a Linux OS to another
Linux OS is slightly over 1.4 seconds (Linux suspend
time plus Linux resume time).

Table 2. further breaks down the suspend/resume
costs of individual Linux device drivers. Note that the
resuming costs of the PCMCIA driver, the frame buffer
driver, and the WiFi driver, dominates the total cost of
device resumption.

On WinCE side, excluding GWES’ (Graphics,
Windowing and Events Subsystem) asynchronous
handling of power on/off events, almost all the costs of
OS switching is in device suspend and resume. Table 3
shows the suspend/resume costs of four drivers that
were used on the WinCE side of the prototype: the
drivers for display, touch screen, keypad, and audio.
The total suspend time for the drivers is about 188ms,
and the total resume time is about 341ms. We can thus
infer that the time for Linux-to-WinCE switch is

around 0.3-0.4 second, while the time for a WinCE-to-
Linux switch is around 1.6 seconds.

We also measured user perceived switching time,
defined as the time from display going into blank in the
outgoing OS, to the time display resumes in the
incoming OS. It is measured as the time between the
end of display driver suspend on one side, to the end of
the display driver resume on the other side. In our
setup, the user perceived switching time from WinCE
to Linux is about 398.8ms, while the user perceived
switching time from Linux to WinCE is about
328.3ms.

4. Related Work

The idea of using suspend/resume (and also
shutdown/reboot) to support multiple OSes first
appeared in a patent [9] by Shimotono. The patent
generally assumes PC-like computing systems where
BIOS performs the major part of switching. The
outgoing OS completely shuts off the whole system
and the incoming OS will start from reset state with a
flag to indicate it is the resumption instead of a regular
booting. From OS perspective there is no difference
between a real suspend/resume and an OS switching.

Clearly this scheme does not work for non-PC
systems where there is no BIOS standard and power
management standard (such as APM or ACPI). In this
paper we extend and broaden this idea to a more
general OS switching approach where tenant OSes
work cooperatively to time-share the same computing
device. Shimotono’s patent is a special case where all
tenant OSes must suspend and shut off all hardware
(even including CPU) completely before a switching
can happen on the rebooting path in BIOS. In this
paper we demonstrate that multiple OSes can suspend
differently into different states and adapt through the
OS switcher with a flexible scheme. Another directly
related approach is the multi-boot approach [4]. Like
OS switching approach, hard disks or permanent
storage are partitioned among tenant OSes, and there is
only one active OS at any time. Unlike OS switching
approach, the active OS owns the whole system RAM
instead sharing with other tenant OSes. However, OS
switching offers much faster switching time.

Suspend Steps Time Used
(us)

Resume Steps Time Used
(us)

Freeze processes 8500 Thaw processes 3226

Device suspend 5845 Device resume 1384313

Other 32 Other 4796

Total 14377 Total 1392335

Table 1. Breaking down OS switching time (Linux)

Device Suspend Time
(us)

Resume Time
(us)

Display 153829 276103

Touchscreen 3439 4380

Keypad 3414 57316

Audio 27500 2862

Total 188182 340661

Table 3. Suspend/resume cost of WinCE device drivers

Driver Suspend
Time (us)

Resume
Time (us) Comment

ak4650-ts 2 3036 Touchscreen

ak4650-core 325 165 core for TS and audio

hostap_cs 1378 254231 Wifi driver

pxa2xx-pcmcia 26 769261 PCMCIA driver

pxa2xx-fb 3770 344926 Frame buffer

pxa2xx-ac97 328 12683 AC97 controller

Other drivers 16 11

total 5845 1384313

Table 2. Suspend and resume cost of Linux device drivers

Compared with virtualization technologies, OS
switching lacks concurrency and hence is not suitable
for application scenarios where multiple OSes need to
run concurrently (for example, telnet from one tenant
OS to another). In addition, OS switching depends on
corporation among OSes and is consequently less
robust against faulty OS implementations. On the other
hand, OS switching offers native execution speed,
which gives better performance than virtualization
(especially traditional full virtualization). In addition,
many application scenarios (such as multi-OS driver
development) require native hardware access which is
not possible in virtualization.

Compared with para-virtualization approaches such
as Xen [5], OS switching requires less kernel
modification. For example, our kernel patch for
Linux/WinCE switching on ARM changes, excluding
device driver changes, 26 lines of WinCE code and 139
lines of Linux, plus around 60 assembly instructions. In
addition, OS switching only needs to change so-called
BSP part of kernel, not as intrusive as other para-
virtualization approaches. Because of this attribute, we
are able to enable Linux-WinCE switching even though
we don’t have the full source of WinCE kernel.

The implementation of OS switching closely
resembles cooperative VM approach in that all kernels
have privileged access to the whole system and the
cooperative relation among OS kernels. Cooperative
Linux [12] modifies Linux kernel to run inside the host
OS’s kernel. The guest Linux kernel runs as a process
on top of the host OS. MMU is time-shared between
the host kernel and guest Linux kernel. Peripheral
hardware access is virtualized through host OS’s
support. Jaluna’s OSware [1] integrates two or more
OSes and multiplexes hardware interrupts and CPU
usage among them. Hardware resources are exclusively
partitioned among OSes. Virtualized hardware access
is possible if the owner OS exports the resource and the
client OS has the virtual driver which knows how to
talk to the owner OS. Compared with cooperative VM
approach, OS switching approach trades multi-OS
concurrency for implementation simplicity and full
native access to hardware.

5. Summary and Conclusion

OS switching enables multiple OSes time-share the
same computer in a cooperative manner. Its
implementation typically reuses suspend/resume
functionalities already existing in modern OSes and
result in little modification to existing kernels.
Compared with multi-boot approach, OS switching
offers much faster switching time. Compared with
virtualization approach OS switching offers simplicity,
native execution speed and native hardware access.

In this paper we generalize the OS switching notion
and present our study on its design, implementation,
and performance. Despite some of its limitations we
believe OS switching is a useful alternative to multi-
boot approach and virtualization approach for many
application scenarios where simplicity, performance,
native hardware access and switching time are
important. We would like to promote this approach
and are hopeful to see wider applications of OS
switching technology.

Acknowledgements

We would like to thank many of our colleagues for
providing insights to our OS switching work, including
Ken Ohta, Takehiro Nakayama, Jane Inamura, and
Atsushi Takeshita. We would also like to thank
Hiroshi Inamura for initiating the idea of putting
multiple OSes on a mobile phone for improved system
dependability.

References

[1] Jaluna. Jaluna OSware. Web site:
http://www.jaluna.com.

[2] Intel and NTT DoCoMo, "Open and Secure Terminal
Initiative (OSTI),"
http://www.nttdocomo.co.jp/english/corporate/technolo
gy/osti/

[3] R. J. Creasy, "The origin of the VM/370 time-sharing
system," IBM Journal of Research and Development,
vol. 25, pp. 483-490, 1981.

[4] GNU. GNU Grub Project. Website:
http://www.gnu.org/software/grub/.

[5] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I.
Pratt, A. Warfield, P. Barham, and R. Neugebauer,
"Xen and the Art of Virtualization," in Proceedings of
the ACM Symposium on Operating Systems Principles,
October, 2003.

[6] Intel. Intel Virtualization Techonology. Web site:
http://www.intel.com/technology/computing/vptech/.

[7] A. Whitaker, M. Shaw, and S. Bribble, "Denali:
Lightweight virtual machines for distributed networked
applications," in Proceedings of the USENIX Annual
Technical Conference, Monterey, CA, June 2002.

[8] VMWare. VMWare home page. Web site:
http://www.vmware.com

[9] S. Shimotono, "Computer system, operating system
switching system, operating system mounting method,
operating system switching method, storage medium,
and program transmission apparatus", US patent
application number US20010018717A1, Aug 30, 2001.

[10] Sophia Systems. Sandgate 2P reference design. Web
site: http://www.sophia.com/Products/SG2P.html.

[11] Advanced Configuration & Power Interface. “ACPI
Specification”. http://www.acpi.info/spec.htm.

[12] D. Aloni, "Cooperative Linux", in Proceedings of the
Linux Symposium (vol 2), pp.23-31, Ottawa, Ontario,
July 21st-24th, 2004.

