
uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

Chapter 7:
PERTS: A Prototyping

Environment for Real-Time
Systems

J. W. S. Liu, C. L. Liu, J. L. Redondo, Z. Deng, T. S. Tia,

R. Bettati, J. Sun, A. Silberman, M. Storch, D. Hull

Department of Computer Science
University of Illinois, Urbana, Illinois 61801

1 Introduction

“Non-functional, or quality, aspects of large systems are often treated in an ad hoc
manner—even when they are critical to the system’s ultimate success. It is usually
difficult to defend claims about a system’s reliability or performance, for example,
before large portions of the system have been implemented and tested.” [SW93]
This statement by Salasin and Waugh is especially true for real-time systems. Here
by areal-time system, we mean one in which a significant portion of all jobs are
time-critical. The termjob refers to a basic unit of work to be scheduled and allo-
cated resources. A job may be a granule of computation, a unit of data transmis-
sion, a file access, or an I/O operation, and so on. Time-critical jobs have timing
constraints. In the simplest form, the timing constraints of a job are specified in
terms of its release time and deadline; the job’s execution cannot begin until its
release time and must be completed by itsdeadline. The failure of a job to com-
plete by its deadline is considered to be a timing fault, and a real-time system func-
tions correctly only in the absence of timing faults. To validate a real-time system,
its builder must demonstrate convincingly that all time-critical jobs always com-
plete by their deadlines.

Traditionally, real-time systems are built by first focusing on their functional
requirements and then validating the system’s timing constraints by exhaustive
simulation or testing. This approach is time consuming and costly. Even worse,
exhaustive simulation and testing are reliable and feasible only for systems that
use clock-driven, cyclic scheduling strategies. Consequently, almost all real-time



304 Chapter 7: PERTS: A Prototyping Environ-

systems that support critical applications are clock-driven. Such a system is diffi-
cult to maintain and extend. Because a small change in the application software or
the underlying hardware and system software can produce unpredictable timing
effects, the system must be tuned and tested exhaustively after every change.

An alternative to the clock-driven paradigm is the priority-driven approach to
scheduling and resource management. A scheduling algorithm ispriority-driven
if it does not intentionally leave any processor idle. Almost all modern, event-
driven scheduling algorithms, such as the FIFO, shortest-processing-time, earli-
est-deadline-first, and rate-monotonic algorithms, are priority-driven. Priority-
driven algorithms are commonly used in non-real-time systems. These algorithms
are supported by commonly used and standard operating systems (such as Posix
Real-Time Extensions, Mach and Lynx OS) and programming languages (such as
Ada9x).

Despite the fact that it is easier to maintain and enhance systems built on pri-
ority-driven strategies, the adoption of these strategies in real-time systems has
been slow. The primary reason is the lack of reliable and tractable methods for val-
idating timing constraints in systems based on these strategies. It is well known
that priority-driven algorithms exhibit anomalous behaviors: The response time of
a set of jobs can be larger when more processors are used execute them, when jobs
have shorter execution times and few dependencies, and when jobs are released
for execution earlier. When jobs have arbitrary release times and share nonpre-
emptable resources, scheduling anomalies can occur even when there is only one
processor and jobs are preemptable. Unfortunately, variations in job execution
time and resource requirements and jitters in job release times that can lead to
anomalies are unavoidable. For this reason, priority-driven scheduling algorithms
have not been used in real-time systems until recently.

Recent research on foundations of real-time systems has led to stable and re-
sponsive priority-driven scheduling strategies, as well as reliable and efficient
methods for validating the timing properties of systems based on them. PERTS
(Prototyping Environment for Real-Time Systems) is a system of software mod-
ules and tools built on these theoretical advances [VK91a] [VK91b]. The software
modules provided by PERTS realize the existing and emerging real-time schedul-
ing algorithms, task and resource assignment algorithms, and resource access con-
trol protocols. They are the building blocks of operating systems for time-critical
applications. By providing a comprehensive system of design, analysis, valida-
tion, and evaluation tools together with these building blocks, PERTS supports the
systematic and rigorous evaluation of new designs, experimentation with alterna-
tive scheduling and resource management strategies, and the analysis and valida-
tion of the resultant prototype system. By making research advances readily us-
able to system developers, PERTS will also serve as a technology transfer vehicle.

PERTS is similar to many real-time systems design and evaluation tools; the



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

advanced algorithms and rigorous methods used in it distinguish PERTS from oth-
ers. For example, the PERTS schedulability analysis system has the capability of
Scheduler 1-2-3 [TM88], but is more versatile and powerful. The PERTS testbed
can be configured to simulate a wide range of operating systems, hardware plat-
forms, and scheduling hierarchies. Unlike integrated prototyping environments,
such as CAPS [Luq89], PERTS does not provide a full range of prototyping tools.
Rather, it focuses on providing rigorous tools and system building blocks that are
not available in these systems.

Following this introduction, we describe briefly the key components of
PERTS and the reference model that characterizes real-time systems and captures
their timing constraints and resource requirements. The PERTS tools assume that
the target system to be analyzed, validated, and evaluated is described in terms of
this model. The capabilities and intended usages of PERTS in prototyping are then
described. A key component is theschedulability analyzer. This
unique set of analysis and validation tools addresses the difficult validation prob-
lems discussed in the subsequent section. These problems have been largely
solved for systems based on the periodic-task model [LL73] [LW82] [SSL89]
[LSD89] [SRL90] [Bak90]. The basic version of the PERTS schedulability ana-
lyzer makes use of these recent theoretical results. This basic system of tools is
now available and is also described in the section. The following section describes
the PERTS simulation environment. The last section discusses future directions.

2 Key Components

Figure 1 shows a block diagram of PERTS. All PERTS software modules and
tools are implemented in the C++ programming language and run under the X
Window System.

Currently, PERTS contains an extendible library of reusable software mod-
ules and a comprehensive set of analysis, evaluation and validation tools. The
software modules implement commonly-used and new scheduling algorithms and
resource access control protocols, including the well-known algorithms for sched-
uling and managing resource access of periodic tasks [LL73] [LW82] [SRL90]
[Bak90], servers for handling aperiodic jobs [SSL89], on-line and off-line algo-
rithms for scheduling imprecise computations [LLS+94], and many other recently
developed algorithms. The user can select and use a subset of them, together with
an operating system kernel that allows external schedulers and resource managers,
to assemble an effective run-time support system. PERTS schedulability analysis
tools provide worst-case bounds and performance predictions of systems based on
different workload models and scheduling paradigms. These tools allow the user
to validate the timing constraints of the prototype system and provide feedback on



306 Chapter 7: PERTS: A Prototyping Environ-

its performance throughout the prototyping process.

Several aspects of real-time systems make ana priori schedulability analysis
difficult or impossible. The arrival pattern of aperiodic tasks may be probabilistic
and not adequately characterized before execution. Active resources in the system
may be scheduled using different scheduling algorithms. Communication times
may be nondeterministic, and so forth. In order to determine the timing properties
of such systems, we turn to simulation methods. While simulation methods have
been extensively used, most simulators are designed around a single scheduling
paradigm and do not focus on real-time issues. PERTS provides an object-oriented
simulation environment, which allows its users to easily construct discrete-event
simulators of multi-paradigm, distributed real-time systems. This environment al-
lows the experimental evaluation of alternatives in scheduling and resource man-
agement and the performance profiling of the overall system.

When it is completed, PERTS will also contain timing analysis and measure-
ment tools. The timing tools can be used to extract from the annotated code its pro-
cessing time and resource requirements, control and data dependencies, and tim-
ing constraints and, thus, the description of the part of the system implemented by

Requirements

Design

Abstract
Description

Instrumented
Source Code

Compiler

Concrete
Description

Instrumented
Object Code

Timing
Analysis

Tools

Synthetic
Workload
Generator

Resource
Description

Description Library

Schedulability Analyzer

Testbed Execution Time
Measurement Tool

FIGURE 1:    PERTS Tools and User Interface



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

the code.

3 Reference Model

For the purpose of validating its timing constraints and evaluating its perfor-
mance, it suffices to describe a real-time system by the workload performed by the
system, the resources available to support the workload, and the algorithms used
to allocate resources. The PERTS reference model of real-time systems character-
izes each real-time system in this way: a system is defined by a task graph, a re-
source graph and a set of scheduling algorithms and resource access control pro-
tocols. Thetask graph describes the application system, called thetask system.
Theresource graph describes the physical and logical resources available to the
task system. The scheduling and resource access control algorithms characterize
the part of the operating system that allocates resources to the task system.

3.1 Task Graphs

A PERTS task graph is an extended precedence graph; the model represented
by the graph is an integration of three well-known real-time workload models: the
periodic-task model, the complex-job model, and the imprecise computation mod-
el [LLS+94]. The graph in Figure 2 shows an example. Each vertex in this graph,
shown either as a circle or a square, represents a job. Edges in a task graph are di-
rected; they specify data, temporal and control dependencies among jobs. There is

g g g

g g g

g
conditional block

g

2/3 1/2

[0, 5] [4, 8] [5, 20]

branch join

[0, 6]

[2, 10]

[2, 5] [5, 8] [8, 12] [12, 15] [15, 18]

[2, 7] [5, 10] [8, 14] [12, 17] [15, 20]

FIGURE 2:    An Example of Task Graphs



308 Chapter 7: PERTS: A Prototyping Environ-

an edge fromJ to K if the corresponding jobK depends on the jobJ in some way.
When there is an edge fromJ to K, the jobJ is animmediate predecessor of the
job K, and the jobK is animmediate successor of the jobJ.

Each job is defined by four sets of parameters: the temporal parameters, re-
source parameters, functional parameters, and interconnection parameters. The
temporal parameters concern the job’s temporal requirements and constraints.
Maximum, average and minimumprocessing times are examples of temporal pa-
rameters, as are its release time and deadline. In Figure 2, the numbers in the
square brackets above each vertex gives the release time and deadline of the job
represented by the vertex. Other parameters are omitted for simplicity.

Traditional real-time applications, such as control-law computations and sen-
sor data transmissions, are often characterized by the periodic-task model [LL73].
In this model, such computations and communications areperiodic tasks, each of
which is a periodic sequence of identical jobs. A job is released at the beginning
of every period and its deadline is some time instant at or before the end of the
period. Figure 2 illustrates how periodic tasks are represented in the task-graph
model. The chain at the top of the graph represents a periodic task whose phase
(that is, the release time of its first job) is 2 and whose period is 3. Jobs in this task
are dependent. Below the chain is another periodic task with the same phase and
period. However, jobs in this task are independent. In the periodic-task model,
some tasks are aperiodic. Anaperiodic task is a stream of aperiodic jobs that are
released and ready for execution sporadically; the jobs have the same statistical
parameters: the same interarrival-time and execution-time distributions and the
same response-time requirements. Aperiodic jobs model computations and com-
munications that must be carried out in response to unexpected events, such as
fault recovery, mode changes, and operator commands. The temporal parameters
of jobs in aperiodic tasks are given in terms of their probability distributions.

The resource parameters indicate what resources a job requires to execute,
as well as the intervals of time and numbers of units required.Functional param-
eters describe other relevant intrinsic properties of the job. Among the functional
parameters areweight, which denotes how important the job is, andlaxity type,
which indicates qualitatively the relative cost of exceeding the deadline but still
completing execution, versus the cost of not completing the execution if the exe-
cution cannot complete in time. Thelaxity function of a job gives us a quantitative
measure of the value of completing the execution of the job at any particular time.
These parameters tell us whether the deadline of the job issoft or hard. It is not
essential to make sure that every soft deadline is met. However, a short response
time is usually a design goal. Also, a job may have one or more optional parts, de-
fined by a set of optional intervals. Optional parts can be left unfinished. Optional
parts allow us to model parts of a computation or data transmission that can be
skipped under overload conditions at the expense of result quality, as well as
multi-versioned jobs.



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

The interconnection parameters of a job give us a part of the information
about how the job depends on other jobs. For example, the parameterout-type of
a job specifies how many of its immediate successors must execute and whether
the result of the job’s execution has any bearing on which immediate successors
execute. The parameterin-type of a job specifies how many of its immediate pre-
decessors must be completed before it can begin execution. By default, the values
of these parameters of every job are AND, meaning that a job can begin execution
only when all of its immediate predecessors are complete and all of its immediate
successors must be executed. By giving one or both of these parameters an OR
value, we can represent conditional executions of jobs as exemplified by the sub-
graph in Figure 2 delimited by the two filled circles. These vertices mark the be-
ginning and end of a conditional block that has two conditional branches. Either
the upper branch, containing a chain of jobs, or the lower branch, containing only
one job, is to be executed. Similarly, each of the square vertices represents a job
which can begin execution as soon as some of its immediate predecessors com-
plete. For example, the vertex marked 2/3 models a voter in a triple-redundant
module; it and its successor can proceed as soon as two out of three replicated im-
mediate predecessors complete. The immediate predecessors of the 1/2 vertex
model two versions of a multi-version computation; only one of them needs to be
completed for it to proceed.

Together with interconnection parameters of jobs, parameters of edges be-
tween jobs completely specify how jobs depend each other. Specifically, the vol-
ume of communication data and the temporal distances between jobs are parame-
ters of the edges connecting them.

3.2 Resource Graphs

Similarly, each resource (type) is defined by its parameters. Some parameters of a
resource specify the constraints governing its usage, such as whether it is preempt-
able, whether it is reusable, etc. Other parameters give timing properties, such as
its processing rate, context-switch time, etc. The user describes a system of re-
sources by means of a resource graph. In this graph, each vertex represents a re-
source type whose attributes include the number of units. Vertices may be con-
nected by two types of edges. There is anis-a-part-of edge for a vertexX to a ver-
texY if the resourceY is a part ofX. These edges connect vertices into rooted trees
and give us information on the localities of the resources. For example, in the re-
source graph shown in the middle of Figure 3, there are four rooted trees whose
vertices are shown as boxes. Each tree represents a computer or network whose
components are represented by vertices in the tree. The other edges, shown as di-
rected dashed edges in Figure 3, representaccessible-from relationships. They in-
dicate which resources can be accessed remotely and by whom.

Some attributes of a job are specified by both its own parameters and the pa-
rameters of the resource(s) it requires. An example isexecution time, the actual



310 Chapter 7: PERTS: A Prototyping Environ-

amount of time that the job executes before it completes. This time is a function
of both the processing time of the job and the processing rate(s) of the processor(s)
it requires. The former is a job parameter and is the execution time of the job when
the processing rate of the processor on which it executes is 1. Hence the execution
time is reduced by the factor 1/x when the processing rate is increased from 1 to
x. The user may wish to investigate how the processing rate(s) of some resource(s)
used by jobs affect their timing behavior. It will be easy to change the system de-

task graph

g g

resource graph

scheduling and resource-access control

processors resources

g g g

scheduling and
resource-access control

FIGURE 3:    A Reference Model of Real-Time Systems



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

scription for this purpose. Another example is preemptability. We view a “nonpre-
emptable” value of the preemptability parameter of a job as an external constraint
that the user wants imposed on the way the job is scheduled. Often, there is no in-
trinsic reason for a job to be nonpreemptable, but preemption may be costly. In this
case, the user may say that the job is preemptable and rely on PERTS tools to de-
termine when preemptive scheduling strategies are too costly and should not be
used. On the other hand, whether a resource is preemptable is typically a function-
al property of the resource. For example, write locks and valid sequence numbers
in a sliding window protocol are resources that must be used serially and, hence,
are not preemptable. When a job requires a nonpreemptable resource, it is nonpre-
emptable on that resource.

3.3 Scheduling Hierarchy

The third element of the PERTS reference model is the set of algorithms and pro-
tocols used to map the task graph onto the resource graph. Figure 3 shows how
this element completes the description of the system to be analyzed and validated.

Some resources, such as memory, are physical entities. Other resources, such
as database locks and system calls, are logical entities. Logical resources are im-
plemented by system software and, therefore, must be scheduled to execute on
physical resources. The scheduling and resource access control algorithms for this
purpose are typically different from the ones used for the application system. Also,
a job may be divided into subjobs, and the resources allocated to the job by the
operating system are in turn allocated to the subjobs. Figure 3 shows such a sched-
uling hierarchy. The PERTS simulation environment and tools are based on this
view of the overall system. Using them to study the interaction between schedul-
ing strategies used in the different levels of the scheduling hierarchy will be con-
venient.

4 Capabilities and Usage

Figure 4 illustrates one way PERTS may be used to the support the systematic mi-
gration from the initial design to the full implementation of a prototype real-time
system. Each box in this figure represents one or more PERTS tools whose pur-
poses are stated by the label of the box.

Specifically, the PERTS schedulability analyzer can serve as an interactive
design tool. In the initial stage of the prototyping process, the architecture of the
target application system is captured by an abstract task graph. At the abstract lev-
el, the task graph represents a family of possible configurations of the system. Job
parameters and dependencies have only estimated values derived from the re-



312 Chapter 7: PERTS: A Prototyping Environ-

quirements of the system.  The schedulability analyzer can be used for many pur-
poses: to determine whether the budgeted amounts of all resources are sufficient
to achieve the required degree of responsiveness; to select computational algo-
rithms from the available choices, which have different levels of result quality ver-
sus processing time and resource requirements; and to suggest values of job pa-
rameters, such as the periods of the periodic tasks, the sizes of servers for handling
aperiodic jobs, the granularities of distributed modules, and alternative dependen-
cy relationships. In other words, the tool provides the feedback needed for the user
to select a feasible configuration that can meet all timing constraints.

The schedulability analyzer will support the hierarchical approach to building
large and complex real-time software on distributed and parallel hardware plat-
forms. Examples of algorithms and tools for this purpose include modules for
scheduling and validating jobs with end-to-end deadlines and for assignment of
jobs to processors. For example, the job assignment module can help the designer
find a feasible partition and assignment such that the jobs assigned to each proces-

Architecture
Abstract

configuration
Concrete

configuration

to generate
performance

profile

Configuration
Constraints

Packaging
rules

capabilities
andlimitations

to determine feasibility and

to validate timing constraints

to select algorithms
and protocols

descriptions and constraints

as inputs to PERTS
feedback provided by PERTS

g

g

g

FIGURE 4:    Usage of PERTS Tools in Prototyping



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

sor can meet their individual deadlines and the overall task system can meet its
end-to-end deadlines. When the task system does not have a feasible assignment,
the schedulability analyzer can suggest possible changes to job and resource pa-
rameters that will help the user make the task system feasible.

PERTS can provide similar support in the later phases of software prototyp-
ing. For example, PERTS can be used to identify and choose a set of scheduling
algorithms and resource access protocols. For this purpose, the system description
needs to be more detailed; a more detailed task graph gives more accurate infor-
mation about the timing and resource requirements of jobs and other relevant
characteristics. Similarly, a more detailed resource graph gives more accurate in-
formation about the resources. PERTS will produce sample task assignments,
schedules, memory layouts, etc., to provide the feedback needed in the iterative
prototyping process. PERTS will also include program execution time analysis
and measurement tools. In the later stages of development, as the source code of
the target task system becomes available, these tools can be used to extract job pa-
rameters and dependencies from the code.

PERTS also provides a simulation environment which will allow a thorough
evaluation of the target system. The most concrete description is the instrumented
object code. This code can run, under the scheduling directives produced by the
schedulability analyzer, in a simulated target environment provided by the testbed.
The testbed will contain a workload generator capable of generating synthetic and
trace-driven workloads to support the simulation of the embedded environment.

PERTS can also be used to ease the process of upgrading and re-engineering
existing systems. The PERTS schedulability analysis and simulation tools can be
used to identify where changes in software or hardware are likely to cause timing
constraints to be violated, and to predict system performance for the changes pro-
posed by the designer. By making it easier to ascertain the timing impact of mod-
ifications, PERTS can help to reduce re-engineering costs.

5 Schedualability Analysis and
Validation

The PERTS schedulability analyzer uses, as much as possible, analytical tech-
niques that are based firmly on scheduling theory. These techniques have an ad-
vantage over simulation and testing in terms of reliability and cost.



314 Chapter 7: PERTS: A Prototyping Environ-

5.1 Challenges in Validating Timing Constraints

Figure 5 illustrates the difficulty and complexity we are likely to encounter when
trying to validate timing constraints by means of simulation. The simple task sys-
tem in this example contains 4 independent jobs, and the underlying system con-
tains 2 identical processors. The ready times and deadlines are as listed in the ta-
ble. The execution times of all the jobs are fixed except for jobJ2. Its execution
time can be any value in the range [2, 6]. The scheduling algorithm used is pre-
emptive and priority-driven. A scheduling algorithm ispriority-driven if it does
not leave any resource idle intentionally. Such an algorithm can be implemented
by assigning priorities to jobs and placing all jobs ready for execution in a queue
ordered by their priorities. Whenever a resource is free, it is allocated to the job
with the highest priority among all ready jobs.  Almost all commonly used event-
driven scheduling algorithms, such as the FIFO, LIFO, shortest-processing-time-
first, earliest-deadline-first, and rate-monotonic algorithms are priority-driven. In
this example, the priority order isJ1, J2, J3, J4 with J1 having the highest priority.

A constraint is that jobs arenot migratable. In other words, once a job begins
execution on a processor, it is constrained to execute on that processor until com-
pletion. We want to validate that all deadlines can be met by simulating the sys-
tem. A naive way is to simulate the system twice: when the execution time ofJ2

has the maximum value 6 and when it has the minimum value 2. The results are
the schedules shown in parts (a) and (b) of Figure 5. By examining these sched-
ules, we would conclude that all jobs can complete by their deadlines. However,
this simulation test does not give us full coverage. This fact is illustrated by the
schedules in parts (c) and (d). The worst-case schedule is shown in (c); the com-
pletion time ofJ4 is 21 when the execution time ofJ2 is 3. If jitter in the comple-
tion time ofJ4 is also important, we would need to know its earliest completion
time. We note that in the best case, shown in (d),J4 completes at time 15 when the
execution time ofJ2 is 5. To find the schedules in (c) and (d) by simulating the
system, we need to exhaustively try all possible execution times ofJ2.

 The phenomenon illustrated by Figure 5 is known as ascheduling anomaly,
the unexpected behavior exhibited by priority-driven scheduling algorithms. Gra-
ham [Gra69] has shown that the completion time of a set of jobs can be later when
more processors are used to execute them and when jobs have shorter execution
times and fewer dependencies. When jobs have arbitrary release times and share
nonpreemptable resources, scheduling anomalies can occur even when there is
only one processor and the jobs are preemptable. These anomalies make it difficult
to ensure full coverage in simulation whenever there are variations in job execu-
tion time and resource requirements, as well as jitters in job release times. Unfor-
tunately, these variations are often unavoidable. For an arbitrary scheduling algo-
rithm, there is no efficient way to find the worst-case completion time of each job.
It is impractical to find the worst-case completion times of all jobs in a large sys-



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

tem by exhaustive simulation.  Because of difficulties in validation and certifica-
tion, modern event-driven scheduling algorithms have not been used in safety-
critical real-time systems until recently, and then only in systems characterizable
by workload models that support rigorous analytical methods.

Recent advances in scheduling theory have made the validation and certifica-
tion of real-time systems that use certain priority-driven algorithms tractable. In
particular, there are now rigorous analytical methods or efficient algorithms for
bounding the worst-case completion times of jobs in systems that are character-
ized by the periodic-task model. We call the conditions that allow us to determine
whether every deadline is met under all normal operating conditionsschedulabil-
ity conditions. These conditions constitute the theoretical basis for the basic

FIGURE 5:    An Illustrative Example

J 1

J 2

J 3

J 4

ri di [ci
−, ci

+]

0

0

4

0

10

10

15

20

[5, 5]

[2, 6]

[8, 8]

[10, 10]

0 4 8 12 16 20

J 1 J 3

J 2 J 4

J 1

J 2 J 4 J 3 J 4

J 1

J 2 J 4 J 3 J 4

J 1 J 3

J 2 J 4

P 1

P 2

(a)

P 1

P 2

(b)

P 1

P 2

(c)

P 1

P 2

(d)



316 Chapter 7: PERTS: A Prototyping Environ-

schedulability analyzer that is now available.

Although the known schedulability analysis methods and conditions current-
ly used in PERTS are derived based on the periodic-task model, they in fact can
be modified easily and applied to all systems in which jobs are statically bound to
processors, as opposed to being dynamically dispatched to available processors.
In particular, it is known that the periodic-task model and the schedulability tests
based on the model are robust. Even when some of the assumptions of the model
are not valid, the conclusions of schedulability tests in the framework of the model
often remain correct. For example, if tasks are scheduled according to a fixed-pri-
ority-driven algorithm, it is not necessary for jobs in periodic tasks to be released
periodically. A schedulability test based on known schedulability conditions as-
sumes that the job being analyzed is released at a worst-case instant. Consequent-
ly, jitters that delay the release times of jobs but do not increase the incremental
demand for processor time will not invalidate the conclusion that all periodic tasks
are schedulable. It is also not necessary for the jobs to execute for exactly their
worst-case execution times. Unlike the example in Figure 5, a schedulable conclu-
sion obtained by using the worst-case execution times of all jobs remains true even
when the execution times of some jobs are in fact shorter.

5.2 Features of the Basic Version

The version of PERTS [LRD+93] that is currently available supports arbitrary
static-priority algorithms, including the rate-monotonic and deadline-monotonic
algorithms [LL73] [LW82], as well as well-known dynamic-priority algorithms
such as the earlist-deadline-first algorithm. The supported resource access control
protocols include the non-preemptive critical section approach, the priority-ceil-
ing protocol [SRL90], and the stack-based protocol [Bak90]. The priority-ceiling
protocol has been extended to handle multiple units of resources. Aperiodic tasks
can be scheduled according to a variety of approaches, including pure or persistant
polling, and sporadic server [SSL89].

Each part of the interaction between the user and the schedulability analyzer
is called a dialogue. The three dialogues are System Analysis, Node Analysis, and
End-to-End Analysis.System Analysis is the main dialogue. Schedulability anal-
ysis of a multiprocessor system begins here. Its objectives are (1) to help the user
to assign tasks to nodes and to partition resources among nodes and (2) to show
the schedulability results of the complete system. The user may initiate a Node
Analysis dialogue to analyze the tasks and resources assigned to a selected node.

The termnode refers to a computer. DuringNode Analysis, the analyzer pro-
poses a server for each aperiodic task on the node, displays a short summary of
schedulability results on all tasks that are bound to the node, and allows the user
to initiate new dialogues. With these dialogues, the user can obtain detailed infor-
mation about processor time usage, resource contention, and average response



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

time. For example, the user may want to tune the average response time of some
aperiodic tasks. This adjustment can be made in several ways, including changing
the types of the servers and modifying the sizes of the servers. While choosing the
types and parameters of the servers, the user may want more accurate estimations
of the average response times. TheAperiodic Tasks dialogue allows the user to
design a simulation experiment and start a simulation process in the background.
Upon its completion, the user can visualize the simulation result, and after view-
ing the results, set the server’s parameters to those used in the experiment. As an-
other example, in theTime Demand dialogue, the analyzer presents the schedula-
bility results graphically to help the user gain insight into why the task system is
schedulable or not schedulable, how much slack time the tasks have, etc. If the
task system is not schedulable, the user can ask the analyzer to propose changes
to the job and resource parameters in order to make it schedulable.

Both Node-Analysis and System-Analysis dialogues offer a node-oriented
view of the system under consideration. The user looks primarily at nodes and
sees the tasks that are assigned to them. In contrast, a task-oriented view provides
the user with a picture of the tasks in the system, together with the information
about the node to which each task is assigned. In some cases a task-oriented view
of the system is required. This is especially true in the analysis of multiprocessor
and distributed systems in which tasks execute in turn on different nodes. In
PERTS, the task-oriented view of the system is provided in the End-to-End Anal-
ysis dialogue. TheEnd-to-End Analysis dialogue provides information on wheth-
er each job will always meet its end-to-end deadlines, and gives its worst-case
completion time on each processor on which the job executes. The user can
choose to provide the immediate release time and deadline on each of the proces-
sor. Alternatively, only the end-to-end release times and deadlines are given; the
analyzer is left to assign the individual intermediate release times and deadlines.

6 Simulation Environment

The PERTS simulation environment is called DRTSS. Again, the overall goal for
DRTSS is to allow the user to model the widest possible variety of real-time sys-
tems in a natural manner and at the desired level of detail. Specifically, it supports
the simulation of complex distributed real-time systems with many different ac-
tive resources such as CPUs, networks, disk drives, graphical displays, and so
forth. These resources are typically scheduled according to different algorithms,
and the granularity of units of work scheduled on them may vary over a wide
range. DRTSS should be useful as a tool for exploring the interaction between
scheduling algorithms on the various resources. DRTSS should also allow the user
to account for the overhead of scheduling algorithms and the effects of their im-
plementations in a realistic way. A factor in scheduling overhead is the time and



318 Chapter 7: PERTS: A Prototyping Environ-

resources used to carry out scheduling activities. The user should be able to sim-
ulate the strategy used by a scheduler to schedule its own scheduling activities.

DRTSS differs from most other simulation frameworks in that it does not take
the traditional queueing theoretical view of the target system. Instead, the target
system is modelled by PERTS task graphs and resource graphs

A DRTSS simulator consists of several objects. Thedriver controls the over-
all execution of the simulator. Each active resource has an associatedmicrokernal
that interfaces it to the rest of the simulator. Associated with each resource may be
one or morescheduling algorithms that control the allocation of the resource to
tasks. Anevent marks the occurrence of a scheduling-related activity.

A “software backplane” interface allows all manner of scheduling algorithms
to plugged into a DRTSS simulator. The user can add custom scheduling algo-
rithms and resource access control protocols that follow the protocol of the inter-
face. PERTS also supplies most common modern scheduling algorithms and re-
source access control protocols, so users will not be required to implement these
algorithms. Tasks that have been implemented (i.e., those tasks for which the user
supplies executable code) can actually execute. In this way, DRTSS allows the
emulation of parts of the software system.

The set of primitive events can be viewed directly. However, in most cases
large volumes of low-level event information is neither required nor desired. Usu-
ally we are interested in counts of the occurrences, or probability distributions of
the intervals between occurrences. We are also interested in detecting particular
patterns of primitive events that have particular temporal relationships, which we
call compound events. We are developing CELL, a language based on first-order
logic, to facilitate the recognition of compound events and the extraction of perti-
nent timing information.

The output event list provides a clean interface between the simulator proper
and output processing tools, such as analysis and display tools. The simulator and
the event list processing tools communicate via Unix sockets. Using event list pro-
cessing tools, we can graphically display the event list as a schedule, save it as a
text file to examined by hand later, input it to an analysis program, etc. We plan to
provide several performance analysis tools written in CELL.

As of this writing, DRTSS is in the early stages of implementation. It is being
written in C++, will run in the Unix/X Window System environment, and will
have an OSF/Motif based user interface, as do all modules of PERTS.



uillinois.doc Chapter 7: PERTS: A Prototyping Environ-

7 Future Work

We are implementing the components of PERTS incrementally in the C++ pro-
gramming language. Again, the basic schedulability analyzer, together with
graphical editors and a compiler needed to enter task and resource graphs graphi-
cally or textually, is now available. We are implementing the PERTS simulation
environment. We also have been evaluating different approaches and methods for
automatic extraction of information on processing time and resource usage of soft-
ware modules written in annotated C++.

We are developing rigorous conditions and performance bounds that are the-
oretical underpinnings of reliable and efficient validation strategies for systems
that do not conveniently fit in the framework of the periodic-task model. An ex-
ample is a multiprocessor system in which each ready job is placed in a common
queue and can be dispatched and scheduled on any available processor. Some of
the preliminary results are described in [LH]. Future enhancement of the schedu-
lability analyzer to predict the timing properties of general systems will be built
on these conditions.

8 Acknowledgements

This work was partially supported by ONR Contract number N00014-J-92-1815.



320 Chapter 7: PERTS: A Prototyping Environ-


