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Abstract

In many real-time systems, the workload can be charac-
terized as a set of jobs with linear precedence constraints
among them. Jabs often have variable execution times and
arbitrary release times. We describe here three algorithms
that can be used to compute upper bounds on completion
times of such jobs scheduled on a priority-driven basis. The
algorithmshavedifferent performanceand complexity. Sm-
ulation was performed to compare their performance.

1. Introduction

The workload of a real-time system oftentimes consists
of dependent jobs. For example, an event of pushing a
button may trigger several jobs to start execution in order.
Meanwhile some other jobs may be executing in response
to some other events. In order to guarantee the responsive-
ness of the system, we must employ a scheduling algorithm
that leads to short compl etion times of these dependent jobs.
Moreover, we must have some means to compute upper
bounds of the completion times so that we can determine
whether every job will indeed completein time.

Specifically, we assume here that the workload on the
processor consistsof n chainsof jobs, or job chains, J4, J5,
.. Jn. Welet J; ; denotethe jth job onjob chain J;; J; ;
cannot execute until itsimmediate predecessor .J; ;_; com-
pletes. Theexecutiontimee; ; of eachjob J; ; isintherange
[e; ;e where e < eff . Therelessetime of job J; ; is
i j, whichisarbitrary but fixed.

We describe herethree algorithmsthat | et us compute up-
per bounds on the completion times of jobs when they are
scheduled according to a given priority-driven agorithm.
The first one computes upper bounds on the effective re-
sponsetimes (ERT) of individual jobsin each chainand is,
therefore, called Algorithm ERT. The second agorithm is
based on theanalysisof thecritical job (CJ) , anotionwhich
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we will define later; it is called Algorithm CJA. The third
algorithmiteratively applies Algorithm CJA toyield tighter
boundsandiscalled Algorithm I TR. AlgorithmsERT, CJA,
ITR yield increasingly tighter upper bounds, but run at in-
creasingly higher complexity. While Algorithm ERT can
be used for on-line admission control (i.e., to determine
whether the system can accept a new chain of jobs and still
ensures on-time completion of al jobs), Algorithm ITR is
suitable for off-line schedul ability analysis.

A great ded of work has been done on timing analysis
for periodic tasks [1, 2, 3, 4, 5]. A periodic task isan in-
finite stream of identical jobsthat are released periodicaly.
The objective of timing analysis is to bound the response
times of al jobsin each task. Lehoczky etc [3] proposed a
time-demand analysismethod for thispurpose. Harbour etc.
[5] proposed a method to bound the response times of jobs
where each periodictask isachain of subtasks. These exist-
ing methods either cannot be applied to bound the comple-
tiontimes of dependent jobsthat havearbitrary rel easetimes
(e.g., the methods based on schedulable utilization bounds
[1]) or yield unsatisfactorily loose bounds (e.g., the time-
demand analysis method [3]). A reason for the poor per-
formance of existing methods is that they ignore the exact
release times of jobs but work with the worst-case combin-
ation of release times. While thistrestment makes sensein
timing analysisfor periodictasks, it causes thea gorithmsto
be very pessimigtic for dependent jobs. As a matter of fact,
Algorithm ERT proposed in this paper aso ignores the re-
lease times of jobs. Aswe will see in Section 6 that the per-
formance of thisagorithmis poor compared with the other
two algorithms, which make use of the information on job
release times.

The problem solved by our algorithmisalsorelated to the
validation problem, that verifiesif all timing constraintsare
satisfied in a real-time system. Both problems deal with a
set of jobswith variable execution times. Ha[6] has studied
the validation problem in multiprocessor or distributed sys-
tems. In her work, asystem ispredictableif the completion
time of ajob can be bounded by the completion times of the



job in the maximum schedul e and minimumschedul e, where
the maximum(minimum) schedule is obtained by applying
the given priority-driven algorithm to the given set of jobs
assuming that all jobs have their maximum(minimum) exe-
cution times. As shown by an example in the next section,
the execution of a set of dependent, preemptable jobs on a
single processor is not predictable. Bounding the comple-
tion times of jobsis a reasonable approach to validating the
timing constraints for this kind of systems. Our algorithms
providetighter boundsand, thus, more accurate conclusions
on the satisfiability of timing constraints than the general
bounds provided by agorithmsin [6].

The rest of the paper is organized as follows. Section 2
formally defines the problem addressed and introduces the
notations used in the paper. Section 3, 4, and 5 present Al-
gorithm ERT, CJA and I TR, respectively. A simulation was
performed to compare the performance of these three a-
gorithms, and the simulation resultsare presented in Section
6. Section 7 discusses modifications of the algorithmswhen
jobshavejittered rel ease times, followed by the conclusions
of the paper.

2. Problem Formulation

Again, the problem addressed here is to determine
whether every jobin n independent job chains can compl ete
in time when the jobs are scheduled on a processor accord-
ing to a given priority-driven agorithm. By independent
chains, we mean that ./; ; has no predecessor for every ¢ =
1,2,...,n, and there is no precedence constraint between
any pair of jobs in two different chains. We assume that
eachjob J; ; hasafixed priority ¢; ; andispreemptable. As
stated earlier, therelease timer; ; of job J; ; isarbitrary but
fixed. Theexecutiontimeisintherangele; ;, e;fj]. Boththe
maximum execution time ejfj and the minimum execution
timee; ;, aswell asthereleasetimer; ;, of J; ; are known,
but the actual execution timee; ; isnot known.

We assume that the release time r; ; of every job J; ; is
consistent with its precedence constraints. Specifically, the
release time r; ; of ajob J; ; is no sooner than r; ;_; +
e; j_1- Inother words, the release time of every job J; ; is
no sooner than the earliest time at which itsimmediate pre-
decessor can complete.!

Anexampleof such asystemisshowninFigurel. Inthis
example, referred to as Example 1 later, there are two job
chains, J; and J,. J; hasfour jobs, and J, hastwo. Each
job J; ; isdescribed by atriplet, (i ;, ¢: 5, [ef ;, ei;]). We
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I Whenthe givenreleasetimesdo not satisfy thisassumption, wereplace
themwith effective releasetimesthat do. The effectivereleasetimeof J; ;
isequal toits givenreleasetime. The effectivereleasetimeof J; ; isequal
to its given releasetime or the sum of the effective releasetime of J; ;_;
and ezj_l , whichever is larger. We loose no generality by working with
the effective release times of jobs.
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Figure 1. The Simple Job Set in Example 1
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Figure 2. Two Schedules of the System in Ex-
ample 1

use integers to represent priorities; the greater the integer,
the higher the priority.

A job isready at the instant when it is released or when
itsimmediate predecessor compl etes, whichever islater. Let
y;,; denote the ready time of job J; ; and ¢; ; denote the
completion time of J; ;. Since the first job in a job chain
Ji has no predecessors, it is ready when it isreleased, i.e,
yi1 = 7. Foralaterjob J; ; (j > 1), wehavey; ; =
max{r; j, ¢; j—1}. Theresponsetimeof J; ; isequal toits
completiontimelessitsreleasetime(i.e, the duration of in-
terval (r; ;, ¢; ;]), and the effective response timeis equal to
its completion time less its ready time (i.e., the duration of
interval (yi,j, Ciyj]).

Because the execution times of jobs may vary and the
scheduling algorithmis priority driven, there may be many
different schedules for a given set of jobs. According to
some of these schedules, ajob may haveitsworst-case(i.e.,
thelatest) completion time whileother jobs may not. In par-
ticular, when all jobs have their maximum execution times,
we may not observe the worst-case completion times of all
the jobs. For example, Figure 2 shows two schedules of
the two job chains in Example 1. In both cases, jobs are
scheduled according to their assigned priorities. We have
the schedulein Figure2(a) when all thejobshave their max-
imum execution times. According to this schedule, job J5 ¢
completes at time 40. However when the execution time of
J1,1 isreduced from40to 30timeunits, we obtain the sched-
ulein Figure 2(b). According to this schedule, the comple-
tiontimeof ./, ; is50. Asit turnsout, thisisthe worst-case
completion time of .J, ;. This example shows that systems



considered in this paper are in genera not predictable [6].
To bound the compl etion times of jobs, we can of course ex-
haustively simulate the execution of the system and search
for theworst-case compl etiontimes of jobs. The complexity
of abrutal-force search is O(EY), where E isthe length of
therangele; ;, e;fj] fordl i and j and N isthetotal number
of jobs in the system, making this approach impractical for
most real-life systems. We focus here on analytical methods
which give us upper bounds on the compl etion times of jobs

rather than finding the exact worst case.

3. Algorithm ERT

Algorithm ERT first boundsthe effective response times
of jobs and then derives the bounds on completion times
from the effective response times. To moetivate this al-
gorithm, we focuson ajob J; ; in job chain J;. Obviously,
thejobsthat can execute during theinterval (y; ;, ¢; ;] must
bein different job chains from J;. Furthermore, their prior-
itiesmust be higher than or equal to the priority ¢; ; of J; ;.

Figure 3 illustratesajob chain J; (k # ¢). The shaded
boxes represent the jobs in J; whose priorities are lower
than ¢; ;, and white boxes represent jobs whose priorities
are equal to or higher than ¢; ;. The lower priority jobs di-
vide the chain J, into subchains, each of which contains
only jobswith priorities higher than or equal to ¢; ;. Inthis
example, there are three such equal or higher priority sub-
chains. We call such a subchain an interference block of
Ji 5. In generd, an interference block of J; ; isasubchain
{Tet, Tk 41, - -5 Jeipa ) OF I, fOr SOme ke # 4. Priorities
Okl Ok 141, - - -, and ¢y 14, @€ higher than or equal to ¢; ;;
either J;, ; has no predecessor or ¢, ;1 islower than ¢; ;;
and either .J, ;.+., hasNO SUCCESSOr OF ¢, 14441 iSIOWer than
¢,;. Only jobs from the interference blocks of J; ; can ex-
ecute during the interval (y; ;, ¢; ;]. Furthermore, since the
interference blocks are separated by one or more jobs with
priorities lower than J; ;, it isimpossible for jobs in more
than one interference block of the same chain to execute in
(yi 4, ci ;]. Consequently, when wewant to bound the effect-
ive response time of J; ;, we only need to consider onein-
terference block from each job chain J; (K # ¢) that can
execute in the interval (y; ;,¢; ;]. Thisallows us to bound
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Figure 3. Interference Blocks

Algorithm Interference

Input :

1. Ajob set.J of jobs where each job Ji,; has release
time ry;, priority ¢, and execution time in the
rangele; . ef 1.

2. Thetargetjob J; ;.

Output :  inter(J;;,J), the maximum delay suffered by J; ;
due to executions of other jobsininterval (y; ;, c: ;1.
Algorithm :
1. inter =0

2. ForeveryjobchainJy (k # 1)
(@) Identify the interference blocks in J; by com-
paring the priorities of jobsin it with ¢; ;;
(b) Compute My ;, the sum of the maximum execu-
tion times of jobsin thelth interference block in
Jx.
(¢) inter = inter + maxi<i<m, {Mr,1}.

3. return inter.

Figure 4. The Pseudo-Code of Algorithm In-
terference

thetotal possible execution times of jobsthat can delay the
completion of J; ; onceit becomes ready at y; ;.

We focus now on finding the maximal effective response
time of J; ;. Hereafter, we call the job whose completion
time we are trying to bound the target job. By an interfer-
ence block, we mean specifically an interferenceblock of the
target job. Supposethat ajob chain J; has my, interference
blocks, and A}, ; is equd to the sum of the maximum exe-
cution times of jobsin the /th interference block in J;. As
we have discussed in the previous paragraph, the maximum
delay of thetarget job J; ; by J;. (i.€., the maximum amount
of timefor which J; ; can bedelayed by jobsin J;) isnever
more than the maximum of A ; fordl{ = 1,2,...,my
(i.e, max<i<m, { Mk 1 }). Thesum of the maximum delays
of J; ; by @l the job chains other than J; gives the maximal
total execution time of all jobs other than J; ; that can ex-
ecuteininterva (y; ;, ¢; ;]. Algorithm Interference, whose
pseudo-code is listed in Figure 4, makes use of this fact.
It computes inter(J; ;,J), the maximum total delay which
target job J; ; may suffer.

Given inter(J; ;,J), the duration of interval (y; ;, ¢; 5],
whichisthe effective responsetime of J; ;, can be straight-
forwardly bounded. In particular, the duration of the inter-

val (y; j,c; ;] satisfies theinequality, (c; ; — v ;) < e, +



inter(J; ;,J). A simpletransformation gives
cij <yij+ ez-'l,—j + inte?“(t]iyj,.]) (1)

For the first job J; ; inthejob chain J;, ;1 = wi1. An
upper bound ¢; ; of ¢; 1 isgiven by

Gi1=ri1+ 6?,—1 + inter(J;1,J) 2

Forajob J; ; (j > 1) whichisnot thefirst job in the chain,
itsready time y; ; isequa to max{ec; ;_1,7; ;}. Therefore
an upper bound ¢; ; of ¢; ; is

éiyj = max{éiyj_l, 7“2'7]'} + ez-'l,—j + inte?“(t]iyj,.]) (3)

By applying Egs.(2) and (3) to jobsin their execution pre-
cedence order, we can obtain an bound on the completion
time for every job. Algorithm ERT calculates ¢; ; for each
target job J; ; inthismanner. The complexity of Algorithm
InterferenceisO(NV), and thecomplexity of AlgorithmERT
isO(N?), where N isthetotal number of jobsinthesystem.

Asan example, we compute inter(J; ;, J) for every job
in Example 1. From the perspective of .J; 1, bothjobsin J,
have higher priorities, and they form oneinterference block.
The maximal execution time of thisblock isthe sum of the
maximum executiontimesof ./, ; and /5 », whichis60time
units. This is the value of inter(J; 1,J). From the per-
spectiveof job /5 1, jobs.J; 1 and J; s havelower priorities
lower, and jobs J; » and ./ 4 have higher priorities. Since
Ji,2 and J; 4 are separated by J; 5, they form two different
interference blocks. The maximal execution times of these
two interference blocks are 10 time unitsand 85 time units,
respectively. Consequently, inter(J2 1, J) is85 time units.
Similarly, inter(J; ;,J) of other jobsin Example 1 can be
computed, and they are listed in Table 1. Based on these
bounds on maximal delays each job can suffer, we proceed
to apply Algorithm ERT to obtain bounds on the compl etion
times of jobs.

¢t = ra+t 6?1 + inter(Jy,1,J) = 100
¢12 = max{cy 1,712} + 6?2 +inter(Jy 2, J) = 110
¢1,3 = max{ci 2,713} + 6f3 +inter(Jy 3,J) = 220
¢14 = max{céi 3,4} + 6f4 +inter(Jy 4,3) = 305
Ca1 = Ta1+ 6;1 +inter(Jy1,J) =125
¢y9 = max{és,ra2}+ 6;2 +inter(Ja 2, J) = 260

Jij Jig | Jiz | Jis | Jia | Jaa | Jae

)

inter(J;;,3) || 60 | 0 | 60 | 0 | 8 | &5

Table 1. inter(J;;,J) values for jobs in Ex-
ample 1

G1 G2 G3 Ga Gs

Figure 5. lllustration of the Critical Job on a
Schedule

4. Algorithm CJA

Algorithm ERT is simple to understand, easy to imple-
ment, and has relatively low complexity. However, it often
does not give satisfactory bounds. In the case of job Js »
in Example 1, the bound on its completion timeis 260 time
units. 125timeunitsof thisboundiscontributed by thecom-
pletion time of itsimmediate predecessor ./ 1, and 85 units
by the possible interference from .J; 4. However, its pre-
decessor /5 ; completes at time 125 only if J» 1 has been
delayed by .J; 4 for 85 time units. Yet this amount of delay
from .J; 4 is counted again in the effective response time of
J2 2. As aresult, the same 85 time units is counted twice
incomputing ¢» ». Similarly, theinterference from J» ; and
J2 2 1scounted twicein the upper bound ¢, 3 of the comple-
tion time of J; 5. Algorithm CJA overcomes this problem
by considering the job chain or a subchain that containsthe
target job as a whole rather than dealing with the target job
in isolation.

To motivate Algorithm CJA, supposethat ajob chain J;
has five jobs, and we are interested in bounding the com-
pletion time of the target job J; 5. Figure 5 shows a pos-
sible worst-case schedule for J; 5, i.e., a schedule accord-
ing towhich J; 5 has itsworst-case completion time. Obvi-
oudy, since al the release times are known, the compl etion
time¢; 5 isequal to »; ;. plusthe duration of (r; x, ¢; 5] for
k=1,2,...,5. If we can find a tighter bound on the dur-
ation of (r; , ¢; 5], we can find a tighter bound on the com-
pletiontimeof J; 5. Aswewill see shortly, for thispurpose,
we should examine the critical job J; ;) of each target job
Jij. Inaschedule, J; .(;y isthe last job in J; before and
including J; ; whose ready timeis equal to itsrelease time.
Wecall theinterval (r; (5, ci ;] thecritical interval . For ex-
ample, inFigure5, J; s isthecritical jobof J; 5, andinterval
(ri,3,ci 5] isthecritical interval.

Lemma 1 states afact that hel ps usto bound the duration
of thecritical interval (r; .(;), ¢i j]-

Lemmal All jobsthat are injob chains other than J; and
execute in the critical interval (r; ., c; ;] have priorities
higher than or equal t0 J; ;0w , Where job J; 1o (c(j) <
low < j) isthe lowest priority job among jobs J; .(;),
Ji,c(j)-|—11 R Jz,]



Proof : Because each of the jobs J; (;), Ji c(j)+1s - - -» @d
J; ; isready to executeimmediately after itsimmediate pre-
decessor compl etes, any job J;, ; that isin another chain and
executes in the critical interva (r; .(;), ¢; ;] must execute
ahead of one of these jobs. Hence the priority of Ji ; is
higher than or equa to the priority of this job, whichisin
turn higher than or equal to J; ;o . a

According to Lemma 1, the jobs that are in job chains
other than J; and can execute in the criticad interva
(7i,e(5), ¢i,;] are the same set of jobs that are in job chains
other than J; and can execute intheinterval (y; 10w, ¢ jow]-
Consequently, their total execution time can be bounded
by inter(J; jow,J). The duration of the critical interval is
never larger than this amount plus the maximum execution
timesof J; c(;), Jic(j)41, - - -» @d J; ;. Inother words,

i
g < rie) D e inter(Jisou,J)
I=c(j)

In the above critical job analysis, we assume that we
know the critical job J; .(;) of each target job J; ; in the
worst-case schedule. Thisassumptionin general isnot true.
To get around this problem, Algorithm CJA computes a
bound on the compl etion time of .J; ; by assuming that each
of its predecessors, including J; ; itself, is the critical job.
Since in the worst-case schedul e there must exist a critical
jaob, one of the boundsthus computed must be a correct one,
and the maximum of these bounds must be a correct bound
aswell. The pseudo-codeof Algorithm CJA islistedin Fig-
ure 6. Itscomplexity isO(N?). Weagain use¢; ; to denote
the upper bound on the completion time of J; ;.

For example, weapply Algorithm CJA to bound the com-
pletiontime of /; 5 in Example 1 and obtain the following
results.

1. Let J;,; bethecritical job. Job J; ; has the lowest
priority among /1 1, J1,2 and Jy s, and by 1 = 711 +
Yot € i + inter(Ji1, J) = 160.

2. Let J; » be the critical job. Job J; 3 has the low-
est priority among J1 2 and Jy 3, and by 5 = 12 +
Secs € + inter(Jy 3, J) = 140.

3. LetJ; 5 bethecritical job. Job .J; 5 hasthelowest pri-
orityamong J s itself,andby 5 = 71 5+3 0 _, et +
inter(Jy 3,J) = 185.

4, The find bound ¢35 is equa to
max{blyl, bl,Za blyg} = 185

We note that when computing the bounds b 1, b1 » and
b1 3, and hence the final bound, the interference from every

Algorithm CJA
Input :

A set {J} of jobswhere eachjob J; ; of which
has the release time r; ;, the priority ¢, ;, and

the execution time in the range of [e, ej’]].

Output :  Theboundé; ; onthecompletiontime of eachjob J; ;.

Algorithm :

For eachjob J; ;
1. For each possible critical job J; x (1 <
k< j)
(8 Find the job J; ;0. such that J; ;0w
has the lowest priority among job
J,‘yk, Ji7k+1, ey and Jm.
(b) Compute

J
bir =rix+ Zeil + inter (Ji 10w, J)
1=k

2. Letém = maXlSkS]{bLk}.

Figure 6. The Pseudo-Code of Algorithm CJA

job on J, is counted only once. As aresult, the bound ob-
tained by Algorithm CJA for J; s is tighter than that ob-
tained by Algorithm ERT. For the same reason, the bounds
obtained by Algorithm CJA for J; 4 and J, » aretighter than
those computed by Algorithm ERT. Table 2 liststhe bounds
on the completion times computed by Algorithm CJA for
all the jobsin Example 1. For the sake of comparison, the
bounds computed by Algorithm ERT are aso listed in the
table.

algorithm Jl,l lez J173 J174 J2,1 J2,2
ERT 100 | 110 | 220 | 305 | 125 | 260
CJA 100 | 110 | 185 | 270 | 125 | 195

Table 2. Bounds Computed by Algorithm ERT
and CJA

Asamatter of fact, every bound obtained by Algorithm
CJA is aways tighter than the corresponding one obtained
by Algorithm ERT. Suppose¢; ; isabound computed by Al-
gorithm ERT on the completion time of .J; ;. From (3), we
can deduce that

éiyj > éi,j—l + e;'jj + inte?“(t]iyj,.])



and
éiyj > T+ e;'jj + inte?“(t]iyj,.])

Givenany k (1 < k < j), weexpand ¢é; ; recursively by
using the above two inequalities and obtain

J J
éiyj > Tk + Z 6;»I_l + Zinter(t]iyl,.]) (4)

=k 7 =k
On the other hand, Step 1(b) of Algorithm CJA in Figure 6
States

J
bik=rin+ > el +inter(Jiion, J) ()
=k

wheel < k < jandk < low < j. Obvioudy,
from (4) and (5), the bound computed by Algorithm ERT is
greater than or equal to every b; , computed by Algorithm
CJA and hence is greater than or equa to the maximum of
b; 'S, whichisthefinal bound computed by AlgorithmCJA.

5. Algorithm ITR

Both of the previoustwo a gorithmsuse Algorithm I nter-
ference in a straightforward way to bound the maximal total
execution time of jobsin job chains other than J; that can
execute in some interval. An obvious drawback of this ap-
proach isthat the rel ease times of jobs are not taken into ac-
count. For example, when the maximum delay suffered by
J1,1 in Example 1 is computed by Algorithm Interference,
the execution time of ./, » iscounted in thedelay. However,
we notice that J» » will not be released until time 60, by
which time /; ; should have already completed even when
J1,1 has its maximum execution time and is preempted by
J2,1. Hence one possibleimprovement isto leave out from
consideration the jobs (such as J, » in this example) that
cannot possibly interferewith theexecution of thetarget job.
In other words, in Step 1(b) of Algorithm CJA, if we can
prune some jobs from the job set J that cannot possibly ex-
ecute in the critical interval and apply Algorithm interfer-
ence to the pruned job set, we can obtain a tighter bound on
the maximum possible delay job J; ; might suffer. Clearly,
the pruning process must be done for every pair of atarget
job and an assumed critical job because different jobs may
be pruned for different combinations.

The next question is how to obtain the information we
need to prunejobsproperly. Oneapproachiscalled the pess-
imisticiteration. We use Algorithm CJA to obtain an initia
bound on the completion time of every job. Thisiscalled
theinitial step. We then iteratively apply the modified Al-
gorithm CJA to obtain a new bound on the completion time
of each job. When bounding the duration of the critical in-
terval for each pair of target job J; ; and assumed critical

job J; (;), the modified Algorithm CJA excludes from con-
sideration any job Jy, ; whose interval (ry 1, éx ;] does not
overlap with the interval (r; .(;), ¢; ;], where ¢ and ¢; ;
are the bounds on the completion times of ./, ; and J; ;, re-
spectively, obtained in the initia step or the previous itera-
tion step. This pruning process is safe because ¢; ;'s com-
puted in the initial step and each of the previous iteration
step are correct upper bounds on the completion times of
jobs and, hence, al the pruned jobs have no chance to ex-
ecutein thecritica interva (r; .(;), ¢i ;]. Theiteration will
terminate when all the new bounds obtained in the current
step are equa to the corresponding bounds obtained in the
previous step. Obvioudly, during each iteration before the
termination, at least one bound on the completion time of a
job is strictly smaller than its corresponding previous one.
Since bounds cannot be arbitrarily small, the iteration will
terminate in afinite number of steps.

Althoughthe pessimisticiteration approach improvesthe
boundsin general, it does not help in our example. We no-
ticethat in Example 1 job J; ; isboth the target job and the
critical job. Theinitial bound on the completiontimeof /; ;
is90. Based onthisbound, interval (1 1, ¢ 1] overlapswith
the critical interva (r; o, é2 2] Of job J2 5. Consequently
J2,2 will not be pruned from consideration using the pess-
imistic iteration approach, and the bound on the completion
timeof J; ; will not beimproved.

A more aggressive approach is called the optimigticiter-
ation. Contrary tothe pessimisticiteration, the optimisticit-
eration starts as an initial step with an optimistic boundson
the compl etiontimes of jobs, obtai ned by assuming that each
jobisinterfered only by jobsin the same job chain. During
each subsequent iteration step, we use the modified CJA al-
gorithm to obtain a new bound on the completion time of
each job J; ; based on bounds obtained in either the previ-
ous iteration step or the initia step. Like the pessimisticit-
eration, for each pair of critical job J; ;) and the target job
Ji ;, we prune any job Ji ; whose interval (ry ;, é ;] does
not overlap withtheinterval (r; .(;), ¢; ;]. Theiteration will
terminate when al the new bounds are equal to the corres-
ponding bounds obtained in the earlier step.

Figure 7 lists the pseudo-code of Algorithm ITR, which
usestheoptimisticiteration approach. Itisessentially aloop
which is preceded by an initia step. Inside the loop, Al-
gorithm CJA is applied but is preceded by two extra steps.
Step 2(biA) and Step 2(biB) are inserted to prune the jobs
Jr, Whose intervals (ry ;, éx ;] do not overlap with the in-
terval (r; c(;), ¢i ;]. Because of the extra pruning steps, the
bounds obtained at the end of the loop body are always no
larger than the corresponding boundsobtai ned by Algorithm
CJA without any pruning. So are thefinal boundswhen the
iteration terminates.

The correctness of Algorithm ITR is stated formally by
the following two theorems. Their proofs can be found in



the appendix.

Theorem 1 AlgorithmITR terminates after a finite number
of iterations.

Theorem 2 The boundsobtained in thelast iteration of Al-
gorithmITRarethe correct upper boundson the compl etion
times of jobs.

Algorithm ITR
Input :

A set {J} of jobs where each job J; ; hasthe
releasetime r; ;, the priority ¢ ;, and the exe-

cutiontimein therangeof [e;, e} ].

Output: A boundé;,; on the completion time of eachjob J; ;.

Algorithm :
1. Foreachjob J; ;
@ ifj=1,¢é,;=ri; +6z+
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(b) otherwise, &; ; = max{&; j_1,ri;} + e;':].

(©) ¢, = 0. (¢'s,, isthe bound on the completion
time of J; ; computed in the previous iteration
step.)

2. Repeatuntil (& ; = ¢'; ;) for every job J; ;

(& Foreachjob J; ;,

iy =iy

(b) For eachtarget job J; ;

i. Foreachpossiblecritical job J; . (1 < k <

7)

AT =]

B. Purgefrom J’ any job Ju . (u # i) for
which the interval (ru,v, ¢’u,. ] doesnot
overlap with theinterval (r; i, ¢’ ;].

C. Find the job J;iow such that J; iow
has the lowest priority among job J; i,
Ji,k+1, ey J,‘J.

D. Compute the bound b; ;. by

J
bik =rix+ Zeil + inter(J,'Jow,J/)

=k

ii. &;=max{bix},k=1,2,...,7.

Figure 7. The Pseudo-Code of Algorithm ITR

Fromthe proof of Theorem 1, we can seethat there can be
no more than O(N3) number of iteration steps. Since each

iteration step has the same complexity of Algorithm CJA,
which is O(N?3), the complexity of Algorithm ITR isthus
O(N°®).

As an example, we apply Algorithm ITR to bound the
completion time of J; ; in Example 1. The initia optim-
istic bound isequal to 40, which isequal to therelease time
of J; 1 plusits maximum execution time. During the first
iteration, the interval (v 1, é2,1] overlaps with (71 1, é1 1],
and therefore J, ; isretained inJ’ at Step 2(biB). Theinter-
val (732, é2,2], however, does not overlap with the interval
(r1,1, ¢11]. Therefore J, » isprunedat Step 2(biB). The new
bound on the completion time of ./, ; becomes 50. During
the second and later iterations, the interval (rs 2, é2 o] still
does not overlap withtheinterval (1 1, ¢ 1], andjob J; 5 is
always pruned. Consequently the bound on the compl etion
timeof J; ; remains 50.

The final bounds on the completion times of al jobsin
Example 1 obtained by (optimistic) AlgorithmITR arelisted
in Table 3. We also list the bounds obtained by Algorithm
ERT and Algorithm CJA, as well as the actua worst-case
completion times of jobs. We note that although Algorithm
ITR givesfairly tight bounds compared with other two al-
gorithms, it may <till fail to find the actual worst-case com-
pletion times. Take job J; 5 for example. Although Al-
gorithm ITR has correctly determined that the completion
of Ji 3 isdelayed only by J» -, it failsto see, however, that
the maximal amount of time delayed by /> » islessthan the
maximum execution time of .J, », because .J» » is released
15timeunitsearlier than J; 3.

algorithm Jl,l lez J173 J174 Jzyl Jzyz
ERT 100 | 110 | 220 | 305 | 125 | 260
CIA 100 | 110 | 185 | 270 | 125 | 195
ITR 50 60 | 175 | 260 | 50 | 110
worst-case || 50 60 | 160 | 245 | 50 | 110

Table 3. Bounds Computed by the Three Al-
gorithms and the Actual Worst-Case Comple-
tion Times

6. Performance of the Algorithms

From the previous discussion, we know that boundsyiel-
ded by Algorithm TR are tighter than those yielded by Al-
gorithm CJA, which in turn are tighter than those yielded
by Algorithm ERT, but we do not know by how much. To
quantify their relative merits and to determine the way their
rel ative performance depends on the characteristics of jobs,
we perform aseries of simulation experiments. This section
discusses the criterion used to evauate their performance,
the method used to generate the workload, and finaly the
simulation results.



6.1. Performance Criterion

The performance criterion we use to compare two al-
gorithms, say A and B, is the bound ratio or the average
bound ratio of A over B. Theratios are defined as follows.
For agiven system of jobs, the bound ratio of (algorithm) A
over (agorithm) B for ajobistheratio of theupper bound on
the response time of the job obtained by A over the corres-
ponding bound obtai ned by B. The boundratio of the system
isthe average of the bound ratiosfor al thejobsin the sys-
tem. Inour experiment, we generate many synthetic systems
and compute the bound ratio for each system. The average
bound ratio is the average of the bound ratios of al the sys-
tems with the same characteristics examined in the experi-
ment. Obvioudly the smaller the average bound ratio of A
over B, the better algorithm A is compared with algorithm
B, provided that theratio isless than 1.

6.2. The generation of workload

Through preliminary experiment, wefound that perform-
ance of the algorithms depends amost entirely on three
factors. They are the number of job chainsin the system,
the number of jobsin each job chain and the density of the
schedule, or the schedule density. Intuitively, the density of
aschedule indicates how “sparse” the scheduleis. It can be
guantized by the density factor, which isthe total maximum
execution time of all jobs divided by the range of release
times of jobs. For example, if the release times of jobsare
distributed in therange of [1, 1000] and the total maximum
execution time of al jobsis equa to 1500, then the dens-
ity factor isegual to 1.5. Obviously, the smaller the density
factor, the " sparser” the schedule.

A configuration isa unique combination of values of the
above three factors. Synthetic systems have the same con-
figuration when they have the same number of job chains,
number of jobs in each job chain and schedule density.
In our simulation experiment, we examined configurations
with the number of job chainsranging from 5, 10, or 15, the
number of jobsineach jobchainbeing1, 2, 5, or 10, and the
schedule density being 0.5, 1, or 2. We thus have 36 con-
figurations. For each configuration, we generated 1000 sys-
temstoyield negligibly small confidenceintervalsfor al the
average values presented bel ow.

Each system of a configuration with x job chains, y jobs
per chain and schedule density z, is generated as follows.
For each of the « job chains and each of the y jobsin the
chain, we choose the release time of the job from the uni-
formdistributionin therange [1,1000000]. We then sort the
jobsin each job chainintheincreasing order of their release
times and add a precedence constraint to each pair of adja-
cent jobsin thejob chain.

To choose the execution times of the jobs, we first com-

pute the total maximum execution time of all jobs by mul-
tiplying the schedule density = by the range of job release
times, 1000000. We then randomly divide the total max-
imum execution time among the xzy jobs. This is done by
first generating an execution factor for each job, which is
uniformally distributed in range [0.001, 1]. We obtain the
normalized execution factor for each job by dividingthe ex-
ecution factor over the sum of execution factors of all jobs.
The maximum execution time of each jobisthen equal tothe
normalized execution factor times the total maximum exe-
cution time. We let the minimum execution time of every
job to be 0. Finaly, the priority of every job is randomly
distributed in range 1, 1000].

6.3. Comparison of Algorithm ERT and Al-
gorithm CJA

In this subsection, by “bound ratio” we mean the aver-
age bound ratio of AlgorithmCJA over AlgorithmERT. The
simulation results show that bound ratiosare not sensitiveto
the number of job chainsin the system. For this reason, we
only present in Figure 8 the bound ratio as afunction of the
number of jobsin each chain and the schedule density. Each
valueinthefigureisthe average value of the bound ratios of
all systems of a configuration. The overal average bound
ratio for all configurationsis 0.77, which indicates that on
average the boundson thejob response timesyiel ded by Al-
gorithm CJA are 23% shorter than the boundsyielded by Al-
gorithm ERT.
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Figure 8. Bound Ratio of Algorithm CJA over
Algorithm ERT

In the figure, we notice that the average bound ratio de-
creases as the number of jobs in each job chain increases.
A closer examination reveals that thisis because the bound
ratio for an individual job is strongly correlated with the po-
sition of the job in the job chain. Figure 9 depicts the av-
erage bound ratio of jobs as a function of their position in
the job chains. The value on the horizonta -axisis the pos-
ition of jobsin their corresponding job chains, and the cor-



responding value on the vertical-axis is the average bound
ratio for al jobsinthat position. We notice that for the first
job on every job chain, Algorithm CJA and Algorithm ERT
yield the same bound. The is due to the fact that both al-
gorithmsinfact do the same computationfor thesejobs. The
average bound rati o decreases asthe number of predecessors
of the target job increases, largely due to the fact that Al-
gorithm ERT sometimes countstheinterference of jobsmul-
tipletimes. The later ajobisin ajob chain, the more likely
Algorithm ERT does so. As aresult, a system with longer
jobchainshasasmaller average boundratio. Figure8 shows
that the bound ratio also decreases a little as the schedule
density increases, mainly for asimilar reason.
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Figure 9. Bound Ratio as Function of the Po-
sition of Jobs

6.4. Comparison of Algorithm CJA and Al-
gorithm ITR

In this subsection we focus on Algorithm CJA and ITR,
and by “bound ratio” we mean the average bound ratio of
Algorithm ITR over Algorithm CJA. The overall average
bound ratio is 0.49 for al configurations, which indicates
that on average the bounds on job response times computed
by Algorithm ITR are about half the bounds computed by
Algorithm CJA.

Figure 10 depicts the average bound ratio as a function
of number of job chainsin the system and shows that bound
ratio of Algorithm ITR over Algorithm CJA varies dightly
but noticeably with the number of job chainsin the system.
When the number of job chains increases while the other
two parameters remain constant, the delay due to interfer-
ence from jobs in difference chains increases. Due to the
pruning step, Algorithm ITR can better estimates the effect
of theincrease than Algorithm CJA. Asaresult, Algorithm
ITR obtainstighter bounds as the number of job chainsin a
system increases.
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Figure 10. Bound Ratio as a Function of the
Number of Job Chains in the System

Figure 11 shows the average bound ratio as a function
of number of jobsin each job chain and the schedul e dens-
ity. The bound ratios are much smaller when the schedule
densitiesare smaller, indicating that Algorithm I TR ismuch
more effective for sparse schedules. When the schedule is
sparse, many jobs execute in isolation and do not interfere
each other. The pruningstepin AlgorithmITR can correctly
detect thisand obtain tighter bounds, while Algorithm CJA
does not have this capability.
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Figure 11. Bound Ratio of Algorithm ITR over
Algorithm CJA

6.5. Summary of the Simulation Results

Figure 12 shows the bound ratio of Algorithm ITR over
Algorithm ERT, as a function of the number of jobs in
each job chain and the schedule density. As we expect,
the boundsyielded by Algorithm ITR are much tighter than
those by Algorithm ERT. In summary, we see a great reduc-
tion of the upper boundson job responsetimesby Algorithm
ITR over Algorithm CJA and ERT. Furthermore, Algorithm



ITR is more effective when the schedule is sparse and the
number of jobsin the systemislarge. When the scheduleis
“dense”, the performance of Algorithm CJA iscloseto that
of AlgorithmITR.
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Figure 12. Bound Ratio of Algorithm ITR over
Algorithm ERT

7. Conclusion and Extension

We have described three algorithms to bound the com-
pletiontimes of jobsin a set of chains when jobs have vari-
able executiontimes, arbitrary release timesand fixed prior-
ities. The algorithms have different complexities and yield
different performance. Our simulation results show that Al-
gorithm ITR consistently produces tighter bounds than the
other two agorithms. The example presented here suggests
that the bounds obtained by Algorithm ITR are close theac-
tual worst-case completion times. The complexity of Al-
gorithmITRisO(N°®), where N isthetotal number of jobs
in a system. This complexity is not a problem for off-line
analysis. When thiscomplexity istoo high, e.g., for the pur-
pose of on-line admission control, Algorithm CJA isagood
alternative choice, especially when the scheduleis expected
to be “dense’.

All three agorithms can be modified to deal with jittery
release times, i.e., the release time of each jobisin arange
of [r; ;7 ]] Algorithm Interference will not be affected
by release time jitters, because it does not use the inform-
ation on job release times. In the case of Algorithm ERT,
we simply replace al r; ;’s with corresponding 7°+]'S The
bounds computed by the modified Algorithm ERT are cor-
rect.

In the case of Algorithm CJA, we first need to redefine
the critical job of the target job as follows: For atarget job

Ji j, thecritical job J; .(;y isthelast job in J; before and
mcludmg J; ; whose ready timeisin itsrelease timerange
[#7 ., ]. By the new definition, the critical job ana-

ylscs(]r)erriaf (ns) correct in bounding the duration of interval

(r;fc(j), ¢; ;1. Consequently, the pseudo-code of Algorithm
CJA remains correct if we replace r; 5, withr;, at Step 1(b)
in Figure6. 7

To see how to take into account release time jittersin
the case of Algorithm ITR, we note that at theinitial steps,
Step 1(a) and 1(b) in Figure 7, we should replace the re-
lease time r; ; with the latest possible release time r+ As
a consequence, the initial bounds are conservative. At Step
2(biB), we need to prune non-interfering jobs to the target
job J; ; from J’. Due to the release jitters, the interval of
ajob (Jy ) becomes (r M,cuv] Similarly, thecritical in-
terval between thecritical job (J; ) andthetarget job (J; ;)
becomes (r;7,, i ;]. We can thustest if ajob J,, , isinter-
fering based on whether these two intervals overlap. Lastly,
when we compute each individua b; , for each assumed
critical job J; ;, a Step 2(biD), we simply replace r;  with
ri i and the final bound will be corrext.

A problem related to thiswork isto find the exact worst-
case completion time. Specifically, the pruning technique
used in Algorithm ITR can effectively reduce a large num-
ber of combinations when exhaustive searching is used to
find the worst-case compl etion time.
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Appendix A - Proof of Theorem 1

Thebound of the completion time of each job obtainedin
thefirst iterationisno smaller than the corresponding bound
obtained in theinitial step, due to the optimistic estimation
used in theinitial step. Asaconsequence, for each pair of
target job and critical job considered at Step 2(bi), fewer or
the same number of jobs are pruned at Step 2(biB) in the
second iteration step, making the value of b; ;, greater than
the corresponding one obtained in the first iteration step.
Hence every bound obtained in the second iteration step is
no smaller than the corresponding bound obtained inthefirst
iteration step. It is easy to see that in each iteration step
the bounds are monotonically non-decreasing and the total
number of jobs pruned at Step 2(biB) is monotonically de-
creasing.

The iteration will continueif and only if for at least one
job the new bound is greater than the corresponding bound
obtai ned inthe previous step. For anew bound of ajobto be
greater than its previous bound, fewer jobs must have been
pruned fromset J’ a Step 2(biB) in thecurrent iteration step
than in the previous step. Overall, in each iteration step, the
total number of jobs pruned at Step 2(biB) must decrease
at least by one. Since the total number of jobs that can be
pruned at Step 2(biB) cannot exceed N2(N — 1) in thefirst
iteration step, the iterative procedure will terminate in a fi-
nite number of iterations. O

Appendix B - Proof of Theorem 2

Wewill provethistheorem by an induction over thejobs
intheincreasing order of their releasetimes. By convention,
let ¢; ; denote the bound on the completion time of J; ; ob-
tained by AlgorithmITR, i.e., thebound obtained by thelast
two iteration steps, and let ¢; ; denote the actual completion
timeof J; ; in the schedule.
Induction basis: Because therelease timesof al jobsare
consistent withtheir precedence constraints, thejob withthe
earliest release timeamong al jobs must be J; ; for some:.
Supposethat the actual completiontimec; ; of .J; 1 isgreater
thanthebound ¢; ;. Let I' denote the total amount of execu-
tiontimesof al jobs, excluding J; 1, that executeininterval
(rig,éi1]. Wemust haveT + ;1 > ¢é 1 — ;1 (Other-
wise job J; 1 would have completed by time ¢; ;). Hence
r+ ejjl > 61— T

Now let us focus on Steps 2(bi) during the last (outer-
most) iteration stepin AlgorithmITR, specifically when J; 4
isthetarget job and thecritical job. Inthelast iteration step,
for every job J, ,, the bound ¢, , obtained is the same as
the bound obtained in the second | ast iteration step, whichis
copiedto cA’w. Consequently thejobs pruned at Step 2(biB)
are those whose release times are later than ¢; ;. Job set J/
obtained at this step thus gives al the jobs that can execute
ininterva (7; 1, é; 1].

Obviously, every job that executes in interval (r; 1, ¢; 1]

must have priority higher than or equa to J; ;. Thus
Inter(J; 1,3') givesan upper boundon I'. By Step 2(biD)
and 2(bii), we have

I+ 6?:1 < Inter(Ji1,¥)+ 6;'?1 =bj1—1r1=20C1—Ti

Thisis a contradiction to the conclusion stated in the pre-
vious paragraph. Therefore the hypothesis must be wrong,
andforjob J; 1 AlgorithmITR yieldsacorrect upper bound
on itscompletion time.

Induction : Now welet J; ; be thejob whose release time
islater thantherel easetimesof k other jobs. Asaninduction
hypothesis, we assume that the completion time of every job
released before J; ; isno larger than the upper bound onits
completion time obtained by Algorithm ITR. We will now
provethat ¢; ; isno larger than ¢; ; either.

We, again, provethis by contradiction. Supposethat ¢; ;
islargerthané; ;. Let J; . (1 < ¢ < j) bethecritica job for
J; 5 inthisschedule, and I' be the total amount of execution
times of al jobs from chains other than J; that execute in
interval (r; ., ¢; ;]. Sincejob J; ; is not completed by ¢; ;,
we must have

J J
F+Ze;’|,—l > F+Zei,l > G — T
l=c

l=c

Now let us focus on Steps 2(bi) during the last (outer-
most) iteration step in Algorithm I TR, specifically when J; ;
is the target job and J; . is the critical job. If job J, , is
pruned at Step 2(biB), then either (1) ¢, v < 74, OF (2)
ruw > ;. Ifajob J, , ispruned due to the first reason,
its release time must be earlier than that of J; ;. By induc-
tion hypothesis, the bound ¢, ., isa correct upper bound on
the compl etion time. Hence we are certain that job J,, ,, can-
not executeininterval (r; ., ¢; ;1. Onthe other hand, if J, .,
is pruned due to the second reason, it cannot execute in in-
terval (r; ., ¢; ;] either. Thusthe new job set J obtained at
Step 2(biB) containsall the possiblejobsthat can execute in
interval (ri,c, éiyj].

Since no job with priority lower than J; ;,.,, Obtained at
Step 2(biC), can execute in interval (7, & ],
Inter(J; 10w, J’) will give an upper bound on T', the total
amount of execution times of jobsthat can execute in inter-
val (r; ., ¢ ;]. By Step 2(biD) and Step 2(bii), we will have

j
+
P+ el <
l=c

< G T Tie

J
Inter(Jiylow , J/) + Z 61—, =bjc—Tic

l=c

This contradicts the conclusion we obtained in the previous
paragraph. The hypothesis must be wrong; we must have
¢ ; < ¢ 4. By induction, we know that for every job in
this schedule its completion time is no longer than the cor-
responding bound computed by Algorithm ITR. |



