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Abstract

In many real-time systems, the workload can be charac-
terized as a set of jobs with linear precedence constraints
among them. Jobs often have variable execution times and
arbitrary release times. We describe here three algorithms
that can be used to compute upper bounds on completion
times of such jobs scheduled on a priority-driven basis. The
algorithmshave different performance and complexity. Sim-
ulation was performed to compare their performance.

1. Introduction

The workload of a real-time system oftentimes consists
of dependent jobs. For example, an event of pushing a
button may trigger several jobs to start execution in order.
Meanwhile some other jobs may be executing in response
to some other events. In order to guarantee the responsive-
ness of the system, we must employ a scheduling algorithm
that leads to short completion times of these dependent jobs.
Moreover, we must have some means to compute upper
bounds of the completion times so that we can determine
whether every job will indeed complete in time.

Specifically, we assume here that the workload on the
processor consists of n chains of jobs, or job chains, J1, J2,: : :, Jn. We let Ji;j denote the jth job on job chain Ji; Ji;j
cannot execute until its immediate predecessor Ji;j�1 com-
pletes. The execution time ei;j of each jobJi;j is in the range[e�i;j; e+i;j] where e�i;j � e+i;j. The release time of job Ji;j isri;j, which is arbitrary but fixed.

We describe here three algorithms that let us compute up-
per bounds on the completion times of jobs when they are
scheduled according to a given priority-driven algorithm.
The first one computes upper bounds on the effective re-
sponse times (ERT) of individual jobs in each chain and is,
therefore, called Algorithm ERT. The second algorithm is
based on the analysis of the critical job (CJ) , a notion which

we will define later; it is called Algorithm CJA. The third
algorithm iteratively applies Algorithm CJA to yield tighter
bounds and is called Algorithm ITR. Algorithms ERT, CJA,
ITR yield increasingly tighter upper bounds, but run at in-
creasingly higher complexity. While Algorithm ERT can
be used for on-line admission control (i.e., to determine
whether the system can accept a new chain of jobs and still
ensures on-time completion of all jobs), Algorithm ITR is
suitable for off-line schedulability analysis.

A great deal of work has been done on timing analysis
for periodic tasks [1, 2, 3, 4, 5]. A periodic task is an in-
finite stream of identical jobs that are released periodically.
The objective of timing analysis is to bound the response
times of all jobs in each task. Lehoczky etc [3] proposed a
time-demand analysis method for this purpose. Harbour etc.
[5] proposed a method to bound the response times of jobs
where each periodic task is a chain of subtasks. These exist-
ing methods either cannot be applied to bound the comple-
tion times of dependent jobs that have arbitrary release times
(e.g., the methods based on schedulable utilization bounds
[1]) or yield unsatisfactorily loose bounds (e.g., the time-
demand analysis method [3]). A reason for the poor per-
formance of existing methods is that they ignore the exact
release times of jobs but work with the worst-case combin-
ation of release times. While this treatment makes sense in
timing analysis for periodic tasks, it causes the algorithms to
be very pessimistic for dependent jobs. As a matter of fact,
Algorithm ERT proposed in this paper also ignores the re-
lease times of jobs. As we will see in Section 6 that the per-
formance of this algorithm is poor compared with the other
two algorithms, which make use of the information on job
release times.

The problem solved by our algorithm is also related to the
validation problem, that verifies if all timing constraints are
satisfied in a real-time system. Both problems deal with a
set of jobs with variable execution times. Ha [6] has studied
the validation problem in multiprocessor or distributed sys-
tems. In her work, a system is predictable if the completion
time of a job can be bounded by the completion times of the



job in the maximum schedule and minimum schedule, where
the maximum(minimum) schedule is obtained by applying
the given priority-driven algorithm to the given set of jobs
assuming that all jobs have their maximum(minimum) exe-
cution times. As shown by an example in the next section,
the execution of a set of dependent, preemptable jobs on a
single processor is not predictable. Bounding the comple-
tion times of jobs is a reasonable approach to validating the
timing constraints for this kind of systems. Our algorithms
provide tighter bounds and, thus, more accurate conclusions
on the satisfiability of timing constraints than the general
bounds provided by algorithms in [6].

The rest of the paper is organized as follows. Section 2
formally defines the problem addressed and introduces the
notations used in the paper. Section 3, 4, and 5 present Al-
gorithm ERT, CJA and ITR, respectively. A simulation was
performed to compare the performance of these three al-
gorithms, and the simulation results are presented in Section
6. Section 7 discusses modifications of the algorithms when
jobs have jittered release times, followed by the conclusions
of the paper.

2. Problem Formulation

Again, the problem addressed here is to determine
whether every job in n independent job chains can complete
in time when the jobs are scheduled on a processor accord-
ing to a given priority-driven algorithm. By independent
chains, we mean that Ji;1 has no predecessor for every i =1; 2; : : : ; n, and there is no precedence constraint between
any pair of jobs in two different chains. We assume that
each job Ji;j has a fixed priority�i;j and is preemptable. As
stated earlier, the release time ri;j of job Ji;j is arbitrary but
fixed. The execution time is in the range [e�i;j; e+i;j]. Both the
maximum execution time e+i;j and the minimum execution
time e�i;j, as well as the release time ri;j, of Ji;j are known,
but the actual execution time ei;j is not known.

We assume that the release time ri;j of every job Ji;j is
consistent with its precedence constraints. Specifically, the
release time ri;j of a job Ji;j is no sooner than ri;j�1 +e�i;j�1. In other words, the release time of every job Ji;j is
no sooner than the earliest time at which its immediate pre-
decessor can complete.1

An example of such a system is shown in Figure 1. In this
example, referred to as Example 1 later, there are two job
chains, J1 and J2. J1 has four jobs, and J2 has two. Each
job Ji;j is described by a triplet, (ri;j; �i;j; [e�i;j; e+i;j]). We1When the given release times do not satisfy this assumption, we replace
them with effective release times that do. The effective release time of Ji;1
is equal to its given release time. The effective release time of Ji;j is equal
to its given release time or the sum of the effective release time of Ji;j�1
and e�i;j�1 , whichever is larger. We loose no generality by working with

the effective release times of jobs.
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Figure 1. The Simple Job Set in Example 1
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Figure 2. Two Schedules of the System in Ex-
ample 1

use integers to represent priorities; the greater the integer,
the higher the priority.

A job is ready at the instant when it is released or when
its immediate predecessor completes, whichever is later. Letyi;j denote the ready time of job Ji;j and ci;j denote the
completion time of Ji;j. Since the first job in a job chainJi has no predecessors, it is ready when it is released, i.e.,yi;1 = ri;1. For a later job Ji;j (j > 1), we have yi;j =maxfri;j; ci;j�1g. The response time of Ji;j is equal to its
completion time less its release time (i.e., the duration of in-
terval (ri;j; ci;j]), and the effective response time is equal to
its completion time less its ready time (i.e., the duration of
interval (yi;j ; ci;j]).

Because the execution times of jobs may vary and the
scheduling algorithm is priority driven, there may be many
different schedules for a given set of jobs. According to
some of these schedules, a job may have its worst-case (i.e.,
the latest) completion time while other jobs may not. In par-
ticular, when all jobs have their maximum execution times,
we may not observe the worst-case completion times of all
the jobs. For example, Figure 2 shows two schedules of
the two job chains in Example 1. In both cases, jobs are
scheduled according to their assigned priorities. We have
the schedule in Figure 2(a) when all the jobs have their max-
imum execution times. According to this schedule, job J2;1
completes at time 40. However when the execution time ofJ1;1 is reduced from 40 to 30 time units, we obtain the sched-
ule in Figure 2(b). According to this schedule, the comple-
tion time of J2;1 is 50. As it turns out, this is the worst-case
completion time of J2;1. This example shows that systems



considered in this paper are in general not predictable [6].
To bound the completion times of jobs, we can of course ex-
haustively simulate the execution of the system and search
for the worst-case completion times of jobs. The complexity
of a brutal-force search is O(EN ), where E is the length of
the range [e�i;j; e+i;j] for all i and j and N is the total number
of jobs in the system, making this approach impractical for
most real-life systems. We focus here on analytical methods
which give us upper bounds on the completion times of jobs
rather than finding the exact worst case.

3. Algorithm ERT

Algorithm ERT first bounds the effective response times
of jobs and then derives the bounds on completion times
from the effective response times. To motivate this al-
gorithm, we focus on a job Ji;j in job chain Ji. Obviously,
the jobs that can execute during the interval (yi;j ; ci;j] must
be in different job chains from Ji. Furthermore, their prior-
ities must be higher than or equal to the priority�i;j of Ji;j.

Figure 3 illustrates a job chain Jk (k 6= i). The shaded
boxes represent the jobs in Jk whose priorities are lower
than �i;j, and white boxes represent jobs whose priorities
are equal to or higher than �i;j. The lower priority jobs di-
vide the chain Jk into subchains, each of which contains
only jobs with priorities higher than or equal to �i;j. In this
example, there are three such equal or higher priority sub-
chains. We call such a subchain an interference block ofJi;j. In general, an interference block of Ji;j is a subchainfJk;l; Jk;l+1; : : : ; Jk;l+ug of Jk, for some k 6= i. Priorities�k;l; �k;l+1; : : : ; and �k;l+u are higher than or equal to �i;j;
either Jk;l has no predecessor or �k;l�1 is lower than �i;j;
and either Jk;l+u has no successor or �k;l+u+1 is lower than�i;j. Only jobs from the interference blocks of Ji;j can ex-
ecute during the interval (yi;j ; ci;j]. Furthermore, since the
interference blocks are separated by one or more jobs with
priorities lower than Ji;j, it is impossible for jobs in more
than one interference block of the same chain to execute in(yi;j; ci;j]. Consequently, when we want to bound the effect-
ive response time of Ji;j, we only need to consider one in-
terference block from each job chain Jk (k 6= i) that can
execute in the interval (yi;j ; ci;j]. This allows us to bound

kJ

interference block interference block interference

block

Figure 3. Interference Blocks

Algorithm Interference

Input :

1. A job set J of jobs where each job Jk;l has release
time rk;l , priority �k;l, and execution time in the
range [e�k;l; e+k;l].

2. The target job Ji;j .

Output : inter(Ji;j ;J), the maximum delay suffered by Ji;j
due to executions of other jobs in interval (yi;j; ci;j ].

Algorithm :

1. inter = 0
2. For every job chain Jk (k 6= i)

(a) Identify the interference blocks in Jk by com-
paring the priorities of jobs in it with �i;j ;

(b) ComputeMk;l , the sum of the maximum execu-
tion times of jobs in the lth interference block inJk .

(c) inter = inter +max1�l�mkfMk;lg.

3. return inter.

Figure 4. The Pseudo-Code of Algorithm In-
terference

the total possible execution times of jobs that can delay the
completion of Ji;j once it becomes ready at yi;j .

We focus now on finding the maximal effective response
time of Ji;j. Hereafter, we call the job whose completion
time we are trying to bound the target job. By an interfer-
ence block, we mean specifically an interference block of the
target job. Suppose that a job chain Jk has mk interference
blocks, and Mk;l is equal to the sum of the maximum exe-
cution times of jobs in the lth interference block in Jk. As
we have discussed in the previous paragraph, the maximum
delay of the target job Ji;j by Jk (i.e., the maximum amount
of time for which Ji;j can be delayed by jobs in Jk) is never
more than the maximum of Mk;l for all l = 1; 2; : : : ;mk
(i.e., max1�l�mkfMk;lg). The sum of the maximum delays
of Ji;j by all the job chains other than Ji gives the maximal
total execution time of all jobs other than Ji;j that can ex-
ecute in interval (yi;j ; ci;j]. Algorithm Interference, whose
pseudo-code is listed in Figure 4, makes use of this fact.
It computes inter(Ji;j;J), the maximum total delay which
target job Ji;j may suffer.

Given inter(Ji;j;J), the duration of interval (yi;j ; ci;j],
which is the effective response time of Ji;j, can be straight-
forwardly bounded. In particular, the duration of the inter-
val (yi;j; ci;j] satisfies the inequality, (ci;j � yi;j) � e+i;j +



inter(Ji;j;J). A simple transformation givesci;j � yi;j + e+i;j + inter(Ji;j ;J) (1)

For the first job Ji;1 in the job chain Ji, ri;1 = yi;1. An
upper bound ĉi;1 of ci;1 is given byĉi;1 = ri;1 + e+i;1 + inter(Ji;1;J) (2)

For a job Ji;j (j > 1) which is not the first job in the chain,
its ready time yi;j is equal to maxfci;j�1; ri;jg. Therefore
an upper bound ĉi;j of ci;j isĉi;j = maxfĉi;j�1; ri;jg+ e+i;j + inter(Ji;j ;J) (3)

By applying Eqs.(2) and (3) to jobs in their execution pre-
cedence order, we can obtain an bound on the completion
time for every job. Algorithm ERT calculates ĉi;j for each
target job Ji;j in this manner. The complexity of Algorithm
Interference isO(N ), and the complexity of AlgorithmERT
isO(N2), whereN is the total number of jobs in the system.

As an example, we compute inter(Ji;j;J) for every job
in Example 1. From the perspective of J1;1, both jobs in J2
have higher priorities, and they form one interference block.
The maximal execution time of this block is the sum of the
maximum execution times of J2;1 and J2;2, which is 60 time
units. This is the value of inter(J1;1;J). From the per-
spective of job J2;1, jobs J1;1 and J1;3 have lower priorities
lower, and jobs J1;2 and J1;4 have higher priorities. SinceJ1;2 and J1;4 are separated by J1;3, they form two different
interference blocks. The maximal execution times of these
two interference blocks are 10 time units and 85 time units,
respectively. Consequently, inter(J2;1;J) is 85 time units.
Similarly, inter(Ji;j ;J) of other jobs in Example 1 can be
computed, and they are listed in Table 1. Based on these
bounds on maximal delays each job can suffer, we proceed
to apply Algorithm ERT to obtain bounds on the completion
times of jobs.ĉ1;1 = r1;1 + e+1;1 + inter(J1;1;J) = 100ĉ1;2 = maxfĉ1;1; r1;2g+ e+1;2 + inter(J1;2;J) = 110ĉ1;3 = maxfĉ1;2; r1;3g+ e+1;3 + inter(J1;3;J) = 220ĉ1;4 = maxfĉ1;3; r1;4g+ e+1;4 + inter(J1;4;J) = 305ĉ2;1 = r2;1 + e+2;1 + inter(J2;1;J) = 125ĉ2;2 = maxfĉ2;1; r2;2g+ e+2;2 + inter(J2;2;J) = 260Ji;j J1;1 J1;2 J1;3 J1;4 J2;1 J2;2inter(Ji;j;J) 60 0 60 0 85 85

Table 1. inter(Ji;j ;J) values for jobs in Ex-
ample 1
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Figure 5. Illustration of the Critical Job on a
Schedule

4. Algorithm CJA

Algorithm ERT is simple to understand, easy to imple-
ment, and has relatively low complexity. However, it often
does not give satisfactory bounds. In the case of job J2;2
in Example 1, the bound on its completion time is 260 time
units. 125 time units of this bound is contributed by the com-
pletion time of its immediate predecessor J2;1, and 85 units
by the possible interference from J1;4. However, its pre-
decessor J2;1 completes at time 125 only if J2;1 has been
delayed by J1;4 for 85 time units. Yet this amount of delay
from J1;4 is counted again in the effective response time ofJ2;2. As a result, the same 85 time units is counted twice
in computing ĉ2;2. Similarly, the interference from J2;1 andJ2;2 is counted twice in the upper bound ĉ1;3 of the comple-
tion time of J1;3. Algorithm CJA overcomes this problem
by considering the job chain or a subchain that contains the
target job as a whole rather than dealing with the target job
in isolation.

To motivate Algorithm CJA, suppose that a job chain Ji
has five jobs, and we are interested in bounding the com-
pletion time of the target job Ji;5. Figure 5 shows a pos-
sible worst-case schedule for Ji;5, i.e., a schedule accord-
ing to which Ji;5 has its worst-case completion time. Obvi-
ously, since all the release times are known, the completion
time ci;5 is equal to ri;k plus the duration of (ri;k; ci;5] fork = 1; 2; : : :; 5. If we can find a tighter bound on the dur-
ation of (ri;k; ci;5], we can find a tighter bound on the com-
pletion time of Ji;5. As we will see shortly, for this purpose,
we should examine the critical job Ji;c(j) of each target jobJi;j. In a schedule, Ji;c(j) is the last job in Ji before and
including Ji;j whose ready time is equal to its release time.
We call the interval (ri;c(j); ci;j] the critical interval. For ex-
ample, in Figure 5, Ji;3 is the critical job of Ji;5, and interval(ri;3; ci;5] is the critical interval.

Lemma 1 states a fact that helps us to bound the duration
of the critical interval (ri;c(j); ci;j].
Lemma 1 All jobs that are in job chains other than Ji and
execute in the critical interval (ri;c(j); ci;j] have priorities
higher than or equal to Ji;low , where job Ji;low (c(j) �low � j) is the lowest priority job among jobs Ji;c(j),Ji;c(j)+1, : : : , Ji;j.



Proof : Because each of the jobs Ji;c(j), Ji;c(j)+1, : : : , andJi;j is ready to execute immediately after its immediate pre-
decessor completes, any job Jk;l that is in another chain and
executes in the critical interval (ri;c(j); ci;j] must execute
ahead of one of these jobs. Hence the priority of Jk;l is
higher than or equal to the priority of this job, which is in
turn higher than or equal to Ji;low . 2

According to Lemma 1, the jobs that are in job chains
other than Ji and can execute in the critical interval(ri;c(j); ci;j] are the same set of jobs that are in job chains
other than Ji and can execute in the interval (yi;low ; ci;low].
Consequently, their total execution time can be bounded
by inter(Ji;low ;J). The duration of the critical interval is
never larger than this amount plus the maximum execution
times of Ji;c(j), Ji;c(j)+1, : : : , and Ji;j. In other words,ci;j � ri;c(j) + jXl=c(j) e+i;l + inter(Ji;low ;J)

In the above critical job analysis, we assume that we
know the critical job Ji;c(j) of each target job Ji;j in the
worst-case schedule. This assumption in general is not true.
To get around this problem, Algorithm CJA computes a
bound on the completion time of Ji;j by assuming that each
of its predecessors, including Ji;j itself, is the critical job.
Since in the worst-case schedule there must exist a critical
job, one of the bounds thus computed must be a correct one,
and the maximum of these bounds must be a correct bound
as well. The pseudo-code of Algorithm CJA is listed in Fig-
ure 6. Its complexity is O(N3). We again use ĉi;j to denote
the upper bound on the completion time of Ji;j.

For example, we apply AlgorithmCJA to bound the com-
pletion time of J1;3 in Example 1 and obtain the following
results.

1. Let J1;1 be the critical job. Job J1;1 has the lowest
priority among J1;1, J1;2 and J1;3, and b1;1 = r1;1 +P3k=1 e+1;k + inter(J1;1;J) = 160.

2. Let J1;2 be the critical job. Job J1;3 has the low-
est priority among J1;2 and J1;3, and b1;2 = r1;2 +P3k=2 e+1;k + inter(J1;3;J) = 140.

3. Let J1;3 be the critical job. Job J1;3 has the lowest pri-
orityamong J1;3 itself, and b1;3 = r1;3+P3k=3 e+1;k+inter(J1;3;J) = 185.

4. The final bound ĉ1;3 is equal tomaxfb1;1; b1;2; b1;3g = 185.

We note that when computing the bounds b1;1, b1;2 andb1;3, and hence the final bound, the interference from every

Algorithm CJA

Input :

A set fJg of jobs where each job Ji;j of which
has the release time ri;j , the priority �i;j , and
the execution time in the range of [e�i;j; e+i;j ].

Output : The bound ĉi;j on the completion time of each jobJi;j .

Algorithm :

For each job Ji;j
1. For each possible critical job Ji;k (1 �k � j)

(a) Find the job Ji;low such that Ji;low
has the lowest priority among jobJi;k , Ji;k+1 , : : : , and Ji;j .

(b) Computebi;k = ri;k + jXl=k e+i;l + inter(Ji;low ;J)
2. Let ĉi;j = max1�k�jfbi;kg.

Figure 6. The Pseudo-Code of Algorithm CJA

job on J2 is counted only once. As a result, the bound ob-
tained by Algorithm CJA for J1;3 is tighter than that ob-
tained by Algorithm ERT. For the same reason, the bounds
obtained by Algorithm CJA for J1;4 and J2;2 are tighter than
those computed by Algorithm ERT. Table 2 lists the bounds
on the completion times computed by Algorithm CJA for
all the jobs in Example 1. For the sake of comparison, the
bounds computed by Algorithm ERT are also listed in the
table.

algorithm J1;1 J1;2 J1;3 J1;4 J2;1 J2;2
ERT 100 110 220 305 125 260
CJA 100 110 185 270 125 195

Table 2. Bounds Computed by Algorithm ERT
and CJA

As a matter of fact, every bound obtained by Algorithm
CJA is always tighter than the corresponding one obtained
by Algorithm ERT. Suppose ĉi;j is a bound computed by Al-
gorithm ERT on the completion time of Ji;j. From (3), we
can deduce thatĉi;j � ĉi;j�1+ e+i;j + inter(Ji;j ;J)



and ĉi;j � ri;j + e+i;j + inter(Ji;j ;J)
Given any k (1 � k � j), we expand ĉi;j recursively by
using the above two inequalities and obtainĉi;j � ri;k + jXl=k e+i;l + jXl=k inter(Ji;l;J) (4)

On the other hand, Step 1(b) of Algorithm CJA in Figure 6
states bi;k = ri;k + jXl=k e+i;l + inter(Ji;low ;J) (5)

where 1 � k � j and k � low � j. Obviously,
from (4) and (5), the bound computed by Algorithm ERT is
greater than or equal to every bi;k computed by Algorithm
CJA and hence is greater than or equal to the maximum ofbi;k’s, which is the final bound computed by AlgorithmCJA.

5. Algorithm ITR

Both of the previous two algorithms use Algorithm Inter-
ference in a straightforward way to bound the maximal total
execution time of jobs in job chains other than Ji that can
execute in some interval. An obvious drawback of this ap-
proach is that the release times of jobs are not taken into ac-
count. For example, when the maximum delay suffered byJ1;1 in Example 1 is computed by Algorithm Interference,
the execution time of J2;2 is counted in the delay. However,
we notice that J2;2 will not be released until time 60, by
which time J1;1 should have already completed even whenJ1;1 has its maximum execution time and is preempted byJ2;1. Hence one possible improvement is to leave out from
consideration the jobs (such as J2;2 in this example) that
cannot possibly interfere with the execution of the target job.
In other words, in Step 1(b) of Algorithm CJA, if we can
prune some jobs from the job set J that cannot possibly ex-
ecute in the critical interval and apply Algorithm interfer-
ence to the pruned job set, we can obtain a tighter bound on
the maximum possible delay job Ji;j might suffer. Clearly,
the pruning process must be done for every pair of a target
job and an assumed critical job because different jobs may
be pruned for different combinations.

The next question is how to obtain the information we
need to prune jobs properly. One approach is called the pess-
imistic iteration. We use Algorithm CJA to obtain an initial
bound on the completion time of every job. This is called
the initial step. We then iteratively apply the modified Al-
gorithm CJA to obtain a new bound on the completion time
of each job. When bounding the duration of the critical in-
terval for each pair of target job Ji;j and assumed critical

job Ji;c(j), the modified Algorithm CJA excludes from con-
sideration any job Jk;l whose interval (rk;l; ĉk;l] does not
overlap with the interval (ri;c(j); ĉi;j], where ĉk;l and ĉi;j
are the bounds on the completion times of Jk;l and Ji;j, re-
spectively, obtained in the initial step or the previous itera-
tion step. This pruning process is safe because ĉi;j’s com-
puted in the initial step and each of the previous iteration
step are correct upper bounds on the completion times of
jobs and, hence, all the pruned jobs have no chance to ex-
ecute in the critical interval (ri;c(j); ci;j]. The iteration will
terminate when all the new bounds obtained in the current
step are equal to the corresponding bounds obtained in the
previous step. Obviously, during each iteration before the
termination, at least one bound on the completion time of a
job is strictly smaller than its corresponding previous one.
Since bounds cannot be arbitrarily small, the iteration will
terminate in a finite number of steps.

Although the pessimistic iteration approach improves the
bounds in general, it does not help in our example. We no-
tice that in Example 1 job J1;1 is both the target job and the
critical job. The initial bound on the completion time of J1;1
is 90. Based on this bound, interval (r1;1; ĉ1;1] overlaps with
the critical interval (r2;2; ĉ2;2] of job J2;2. ConsequentlyJ2;2 will not be pruned from consideration using the pess-
imistic iteration approach, and the bound on the completion
time of J1;1 will not be improved.

A more aggressive approach is called the optimistic iter-
ation. Contrary to the pessimistic iteration, the optimistic it-
eration starts as an initial step with an optimistic bounds on
the completion times of jobs, obtained by assuming that each
job is interfered only by jobs in the same job chain. During
each subsequent iteration step, we use the modified CJA al-
gorithm to obtain a new bound on the completion time of
each job Ji;j based on bounds obtained in either the previ-
ous iteration step or the initial step. Like the pessimistic it-
eration, for each pair of critical job Ji;c(j) and the target jobJi;j, we prune any job Jk;l whose interval (rk;l; ĉk;l] does
not overlap with the interval (ri;c(j); ĉi;j]. The iteration will
terminate when all the new bounds are equal to the corres-
ponding bounds obtained in the earlier step.

Figure 7 lists the pseudo-code of Algorithm ITR, which
uses the optimistic iteration approach. It is essentially a loop
which is preceded by an initial step. Inside the loop, Al-
gorithm CJA is applied but is preceded by two extra steps.
Step 2(biA) and Step 2(biB) are inserted to prune the jobsJk;l whose intervals (rk;l; ĉk;l] do not overlap with the in-
terval (ri;c(j); ĉi;j]. Because of the extra pruning steps, the
bounds obtained at the end of the loop body are always no
larger than the corresponding bounds obtained by Algorithm
CJA without any pruning. So are the final bounds when the
iteration terminates.

The correctness of Algorithm ITR is stated formally by
the following two theorems. Their proofs can be found in



the appendix.

Theorem 1 Algorithm ITR terminates after a finite number
of iterations.

Theorem 2 The bounds obtained in the last iteration of Al-
gorithm ITR are the correct upper bounds on the completion
times of jobs.

Algorithm ITR

Input :

A set fJg of jobs where each job Ji;j has the
release time ri;j , the priority �i;j , and the exe-
cution time in the range of [e�i;j; e+i;j ].

Output : A bound ĉi;j on the completion time of each job Ji;j .

Algorithm :

1. For each job Ji;j
(a) if j = 1, ĉi;j = ri;j + e+i;j ;

(b) otherwise, ĉi;j = maxfĉi;j�1; ri;jg+ e+i;j .

(c) ĉ0i;j = 0. (ĉ0i;j is the bound on the completion
time of Ji;j computed in the previous iteration
step.)

2. Repeat until (ĉi;j = ĉ0i;j ) for every job Ji;j
(a) For each job Ji;j ,ĉ0i;j = ĉi;j
(b) For each target job Ji;j

i. For eachpossible critical jobJi;k (1 � k �j)
A. J0 = J
B. Purge from J0 any job Ju;v (u 6= i) for

which the interval (ru;v; ĉ0u;v ] does not
overlap with the interval (ri;k ; ĉ0i;j ].

C. Find the job Ji;low such that Ji;low
has the lowest priority among job Ji;k ,Ji;k+1 , : : : , Ji;j .

D. Compute the bound bi;k bybi;k = ri;k + jXl=k e+i;l + inter(Ji;low ;J0)
ii. ĉi;j = maxfbi;kg, k = 1; 2; : : : ; j.

Figure 7. The Pseudo-Code of Algorithm ITR

From the proof of Theorem 1, we can see that there can be
no more than O(N3) number of iteration steps. Since each

iteration step has the same complexity of Algorithm CJA,
which is O(N3), the complexity of Algorithm ITR is thusO(N6).

As an example, we apply Algorithm ITR to bound the
completion time of J1;1 in Example 1. The initial optim-
istic bound is equal to 40, which is equal to the release time
of J1;1 plus its maximum execution time. During the first
iteration, the interval (r2;1; ĉ2;1] overlaps with (r1;1; ĉ1;1],
and therefore J2;1 is retained in J0 at Step 2(biB). The inter-
val (r2;2; ĉ2;2], however, does not overlap with the interval(r1;1; ĉ1;1]. Therefore J2;2 is pruned at Step 2(biB). The new
bound on the completion time of J1;1 becomes 50. During
the second and later iterations, the interval (r2;2; ĉ2;2] still
does not overlap with the interval (r1;1; ĉ1;1], and job J2;2 is
always pruned. Consequently the bound on the completion
time of J1;1 remains 50.

The final bounds on the completion times of all jobs in
Example 1 obtained by (optimistic)AlgorithmITR are listed
in Table 3. We also list the bounds obtained by Algorithm
ERT and Algorithm CJA, as well as the actual worst-case
completion times of jobs. We note that although Algorithm
ITR gives fairly tight bounds compared with other two al-
gorithms, it may still fail to find the actual worst-case com-
pletion times. Take job J1;3 for example. Although Al-
gorithm ITR has correctly determined that the completion
of J1;3 is delayed only by J2;2, it fails to see, however, that
the maximal amount of time delayed by J2;2 is less than the
maximum execution time of J2;2, because J2;2 is released
15 time units earlier than J1;3.

algorithm J1;1 J1;2 J1;3 J1;4 J2;1 J2;2
ERT 100 110 220 305 125 260
CJA 100 110 185 270 125 195
ITR 50 60 175 260 50 110

worst-case 50 60 160 245 50 110

Table 3. Bounds Computed by the Three Al-
gorithms and the Actual Worst-Case Comple-
tion Times

6. Performance of the Algorithms

From the previous discussion, we know that bounds yiel-
ded by Algorithm ITR are tighter than those yielded by Al-
gorithm CJA, which in turn are tighter than those yielded
by Algorithm ERT, but we do not know by how much. To
quantify their relative merits and to determine the way their
relative performance depends on the characteristics of jobs,
we perform a series of simulation experiments. This section
discusses the criterion used to evaluate their performance,
the method used to generate the workload, and finally the
simulation results.



6.1. Performance Criterion
The performance criterion we use to compare two al-

gorithms, say A and B, is the bound ratio or the average
bound ratio of A over B. The ratios are defined as follows.
For a given system of jobs, the bound ratio of (algorithm) A
over (algorithm)B for a job is the ratio of the upper bound on
the response time of the job obtained by A over the corres-
ponding bound obtained by B. The bound ratio of the system
is the average of the bound ratios for all the jobs in the sys-
tem. In our experiment, we generate many synthetic systems
and compute the bound ratio for each system. The average
bound ratio is the average of the bound ratios of all the sys-
tems with the same characteristics examined in the experi-
ment. Obviously the smaller the average bound ratio of A
over B, the better algorithm A is compared with algorithm
B, provided that the ratio is less than 1.6.2. The generation of workload

Through preliminary experiment, we found that perform-
ance of the algorithms depends almost entirely on three
factors. They are the number of job chains in the system,
the number of jobs in each job chain and the density of the
schedule, or the schedule density. Intuitively, the density of
a schedule indicates how “sparse” the schedule is. It can be
quantized by the density factor, which is the total maximum
execution time of all jobs divided by the range of release
times of jobs. For example, if the release times of jobs are
distributed in the range of [1; 1000] and the total maximum
execution time of all jobs is equal to 1500, then the dens-
ity factor is equal to 1.5. Obviously, the smaller the density
factor, the “sparser” the schedule.

A configuration is a unique combination of values of the
above three factors. Synthetic systems have the same con-
figuration when they have the same number of job chains,
number of jobs in each job chain and schedule density.
In our simulation experiment, we examined configurations
with the number of job chains ranging from 5, 10, or 15, the
number of jobs in each job chain being 1, 2, 5, or 10, and the
schedule density being 0.5, 1, or 2. We thus have 36 con-
figurations. For each configuration, we generated 1000 sys-
tems to yield negligibly small confidence intervals for all the
average values presented below.

Each system of a configuration with x job chains, y jobs
per chain and schedule density z, is generated as follows.
For each of the x job chains and each of the y jobs in the
chain, we choose the release time of the job from the uni-
form distribution in the range [1,1000000]. We then sort the
jobs in each job chain in the increasing order of their release
times and add a precedence constraint to each pair of adja-
cent jobs in the job chain.

To choose the execution times of the jobs, we first com-

pute the total maximum execution time of all jobs by mul-
tiplying the schedule density z by the range of job release
times, 1000000. We then randomly divide the total max-
imum execution time among the xy jobs. This is done by
first generating an execution factor for each job, which is
uniformally distributed in range [0:001; 1]. We obtain the
normalized execution factor for each job by dividing the ex-
ecution factor over the sum of execution factors of all jobs.
The maximum execution time of each job is then equal to the
normalized execution factor times the total maximum exe-
cution time. We let the minimum execution time of every
job to be 0. Finally, the priority of every job is randomly
distributed in range [1; 1000].6.3. Comparison of Algorithm ERT and Al-gorithm CJA

In this subsection, by “bound ratio” we mean the aver-
age bound ratio of AlgorithmCJA over Algorithm ERT. The
simulation results show that bound ratios are not sensitive to
the number of job chains in the system. For this reason, we
only present in Figure 8 the bound ratio as a function of the
number of jobs in each chain and the schedule density. Each
value in the figure is the average value of the bound ratios of
all systems of a configuration. The overall average bound
ratio for all configurations is 0.77, which indicates that on
average the bounds on the job response times yielded by Al-
gorithm CJA are 23% shorter than the bounds yielded by Al-
gorithm ERT.
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Figure 8. Bound Ratio of Algorithm CJA over
Algorithm ERT

In the figure, we notice that the average bound ratio de-
creases as the number of jobs in each job chain increases.
A closer examination reveals that this is because the bound
ratio for an individual job is strongly correlated with the po-
sition of the job in the job chain. Figure 9 depicts the av-
erage bound ratio of jobs as a function of their position in
the job chains. The value on the horizontal-axis is the pos-
ition of jobs in their corresponding job chains, and the cor-



responding value on the vertical-axis is the average bound
ratio for all jobs in that position. We notice that for the first
job on every job chain, Algorithm CJA and Algorithm ERT
yield the same bound. The is due to the fact that both al-
gorithms in fact do the same computation for these jobs. The
average bound ratio decreases as the number of predecessors
of the target job increases, largely due to the fact that Al-
gorithm ERT sometimes counts the interference of jobs mul-
tiple times. The later a job is in a job chain, the more likely
Algorithm ERT does so. As a result, a system with longer
job chains has a smaller average bound ratio. Figure 8 shows
that the bound ratio also decreases a little as the schedule
density increases, mainly for a similar reason.
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Figure 9. Bound Ratio as Function of the Po-
sition of Jobs6.4. Comparison of Algorithm CJA and Al-gorithm ITR
In this subsection we focus on Algorithm CJA and ITR,

and by “bound ratio” we mean the average bound ratio of
Algorithm ITR over Algorithm CJA. The overall average
bound ratio is 0.49 for all configurations, which indicates
that on average the bounds on job response times computed
by Algorithm ITR are about half the bounds computed by
Algorithm CJA.

Figure 10 depicts the average bound ratio as a function
of number of job chains in the system and shows that bound
ratio of Algorithm ITR over Algorithm CJA varies slightly
but noticeably with the number of job chains in the system.
When the number of job chains increases while the other
two parameters remain constant, the delay due to interfer-
ence from jobs in difference chains increases. Due to the
pruning step, Algorithm ITR can better estimates the effect
of the increase than Algorithm CJA. As a result, Algorithm
ITR obtains tighter bounds as the number of job chains in a
system increases.
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Figure 10. Bound Ratio as a Function of the
Number of Job Chains in the System

Figure 11 shows the average bound ratio as a function
of number of jobs in each job chain and the schedule dens-
ity. The bound ratios are much smaller when the schedule
densities are smaller, indicating that Algorithm ITR is much
more effective for sparse schedules. When the schedule is
sparse, many jobs execute in isolation and do not interfere
each other. The pruning step in Algorithm ITR can correctly
detect this and obtain tighter bounds, while Algorithm CJA
does not have this capability.
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Figure 11. Bound Ratio of Algorithm ITR over
Algorithm CJA6.5. Summary of the Simulation Results
Figure 12 shows the bound ratio of Algorithm ITR over

Algorithm ERT, as a function of the number of jobs in
each job chain and the schedule density. As we expect,
the bounds yielded by Algorithm ITR are much tighter than
those by Algorithm ERT. In summary, we see a great reduc-
tion of the upper bounds on job response times by Algorithm
ITR over Algorithm CJA and ERT. Furthermore, Algorithm



ITR is more effective when the schedule is sparse and the
number of jobs in the system is large. When the schedule is
“dense”, the performance of Algorithm CJA is close to that
of Algorithm ITR.
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Figure 12. Bound Ratio of Algorithm ITR over
Algorithm ERT

7. Conclusion and Extension

We have described three algorithms to bound the com-
pletion times of jobs in a set of chains when jobs have vari-
able execution times, arbitrary release times and fixed prior-
ities. The algorithms have different complexities and yield
different performance. Our simulation results show that Al-
gorithm ITR consistently produces tighter bounds than the
other two algorithms. The example presented here suggests
that the bounds obtained by Algorithm ITR are close the ac-
tual worst-case completion times. The complexity of Al-
gorithm ITR is O(N6), where N is the total number of jobs
in a system. This complexity is not a problem for off-line
analysis. When this complexity is too high, e.g., for the pur-
pose of on-line admission control, Algorithm CJA is a good
alternative choice, especially when the schedule is expected
to be “dense”.

All three algorithms can be modified to deal with jittery
release times, i.e., the release time of each job is in a range
of [r�i;j; r+i;j], Algorithm Interference will not be affected
by release time jitters, because it does not use the inform-
ation on job release times. In the case of Algorithm ERT,
we simply replace all ri;j’s with corresponding r+i;j’s. The
bounds computed by the modified Algorithm ERT are cor-
rect.

In the case of Algorithm CJA, we first need to redefine
the critical job of the target job as follows: For a target jobJi;j, the critical job Ji;c(j) is the last job in Ji before and
including Ji;j whose ready time is in its release time range[r�i;c(j); r+i;c(j)]. By the new definition, the critical job ana-
lysis remains correct in bounding the duration of interval

(r+i;c(j); ci;j]. Consequently, the pseudo-code of Algorithm

CJA remains correct if we replace ri;k with r+i;k at Step 1(b)
in Figure 6.

To see how to take into account release time jitters in
the case of Algorithm ITR, we note that at the initial steps,
Step 1(a) and 1(b) in Figure 7, we should replace the re-
lease time ri;j with the latest possible release time r+i;j. As
a consequence, the initial bounds are conservative. At Step
2(biB), we need to prune non-interfering jobs to the target
job Ji;j from J0. Due to the release jitters, the interval of
a job (Ju;v) becomes (r�u;v; ĉ0u;v]. Similarly, the critical in-
terval between the critical job (Ji;k) and the target job (Ji;j)
becomes (r�i;k; ĉ0i;j]. We can thus test if a job Ju;v is inter-
fering based on whether these two intervals overlap. Lastly,
when we compute each individual bi;k for each assumed
critical job Ji;k at Step 2(biD), we simply replace ri;k withr+i;k, and the final bound will be correct.

A problem related to this work is to find the exact worst-
case completion time. Specifically, the pruning technique
used in Algorithm ITR can effectively reduce a large num-
ber of combinations when exhaustive searching is used to
find the worst-case completion time.
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Appendix A - Proof of Theorem 1
The bound of the completion time of each job obtained in

the first iteration is no smaller than the corresponding bound
obtained in the initial step, due to the optimistic estimation
used in the initial step. As a consequence, for each pair of
target job and critical job considered at Step 2(bi), fewer or
the same number of jobs are pruned at Step 2(biB) in the
second iteration step, making the value of bi;k greater than
the corresponding one obtained in the first iteration step.
Hence every bound obtained in the second iteration step is
no smaller than the corresponding bound obtained in the first
iteration step. It is easy to see that in each iteration step
the bounds are monotonically non-decreasing and the total
number of jobs pruned at Step 2(biB) is monotonically de-
creasing.

The iteration will continue if and only if for at least one
job the new bound is greater than the corresponding bound
obtained in the previous step. For a new bound of a job to be
greater than its previous bound, fewer jobs must have been
pruned from set J0 at Step 2(biB) in the current iteration step
than in the previous step. Overall, in each iteration step, the
total number of jobs pruned at Step 2(biB) must decrease
at least by one. Since the total number of jobs that can be
pruned at Step 2(biB) cannot exceed N2(N � 1) in the first
iteration step, the iterative procedure will terminate in a fi-
nite number of iterations. 2
Appendix B - Proof of Theorem 2

We will prove this theorem by an induction over the jobs
in the increasing order of their release times. By convention,
let ĉi;j denote the bound on the completion time of Ji;j ob-
tained by Algorithm ITR, i.e., the bound obtained by the last
two iteration steps, and let ci;j denote the actual completion
time of Ji;j in the schedule.
Induction basis : Because the release times of all jobs are
consistent with their precedence constraints, the job with the
earliest release time among all jobs must be Ji;1 for some i.
Suppose that the actual completion time ci;1 of Ji;1 is greater
than the bound ĉi;1. Let � denote the total amount of execu-
tion times of all jobs, excluding Ji;1, that execute in interval(ri;1; ĉi;1]. We must have � + ei;1 > ĉi;1 � ri;1 (Other-
wise job Ji;1 would have completed by time ĉi;1). Hence� + e+i;1 > ĉi;1 � ri;1.

Now let us focus on Steps 2(bi) during the last (outer-
most) iteration step in AlgorithmITR, specifically when Ji;1
is the target job and the critical job. In the last iteration step,
for every job Jx;y, the bound ĉx;y obtained is the same as
the bound obtained in the second last iteration step, which is
copied to ĉ0x;y. Consequently the jobs pruned at Step 2(biB)
are those whose release times are later than ĉi;1. Job set J0
obtained at this step thus gives all the jobs that can execute
in interval (ri;1; ĉi;1].

Obviously, every job that executes in interval (ri;1; ĉi;1]

must have priority higher than or equal to Ji;1. ThusInter(Ji;1;J0) gives an upper bound on �. By Step 2(biD)
and 2(bii), we have� + e+i;1 � Inter(Ji;1;J0) + e+i;1 = bi;1 � ri;1 = ĉi;1 � ri;1
This is a contradiction to the conclusion stated in the pre-
vious paragraph. Therefore the hypothesis must be wrong,
and for job Ji;1 Algorithm ITR yields a correct upper bound
on its completion time.
Induction : Now we let Ji;j be the job whose release time
is later than the release times of k other jobs. As an induction
hypothesis, we assume that the completion time of every job
released before Ji;j is no larger than the upper bound on its
completion time obtained by Algorithm ITR. We will now
prove that ci;j is no larger than ĉi;j either.

We, again, prove this by contradiction. Suppose that ci;j
is larger than ĉi;j. Let Ji;c (1 � c � j) be the critical job forJi;j in this schedule, and � be the total amount of execution
times of all jobs from chains other than Ji that execute in
interval (ri;c; ĉi;j]. Since job Ji;j is not completed by ĉi;j,
we must have� + jXl=c e+i;l � � + jXl=c ei;l > ĉi;j � ri;c

Now let us focus on Steps 2(bi) during the last (outer-
most) iteration step in Algorithm ITR, specifically when Ji;j
is the target job and Ji;c is the critical job. If job Ju;v is
pruned at Step 2(biB), then either (1) ĉu;v < ri;c, or (2)ru;v > ĉi;j. If a job Ju;v is pruned due to the first reason,
its release time must be earlier than that of Ji;j. By induc-
tion hypothesis, the bound ĉu;v is a correct upper bound on
the completion time. Hence we are certain that job Ju;v can-
not execute in interval (ri;c; ĉi;j]. On the other hand, if Ju;v
is pruned due to the second reason, it cannot execute in in-
terval (ri;c; ĉi;j] either. Thus the new job set J0 obtained at
Step 2(biB) contains all the possible jobs that can execute in
interval (ri;c; ĉi;j].

Since no job with priority lower than Ji;low, obtained at
Step 2(biC), can execute in interval (ri;c; ĉi;j],Inter(Ji;low ;J0) will give an upper bound on �, the total
amount of execution times of jobs that can execute in inter-
val (ri;c; ĉi;j]. By Step 2(biD) and Step 2(bii), we will have� + jXl=c e+i;l � Inter(Ji;low ;J0) + jXl=c e+i;l = bi;c � ri;c� ĉi;j � ri;c
This contradicts the conclusion we obtained in the previous
paragraph. The hypothesis must be wrong; we must haveci;j � ĉi;j. By induction, we know that for every job in
this schedule its completion time is no longer than the cor-
responding bound computed by Algorithm ITR. 2


