
Appeared in the Proceedings of 11th IEEE Workshop on Real-Time Operating Systems and Software, 1994.An End-to-End Approach to Schedule Tasks with Shared Resourcesin Multiprocessor SystemsJun Sun Riccardo Bettati Jane W.-S. LiuDepartment of Computer ScienceUniversity of Illinois, Urbana-ChampaignUrbana, IL 61801AbstractIn this paper we propose an end-to-end approachto scheduling tasks that share resources in a multipro-cessor or distributed systems. In our approach, eachtask is mapped into a chain of subtasks, depending onits resource accesses. After each subtask is assigneda proper priority, its worst-case response time can bebounded. Consequently the worst-case response timeof each task can be obtained and the schedulability ofeach task can be veri�ed by comparing the worst-caseresponse time with its relative deadline.1 IntroductionTasks in real-time systems often share resources,and semaphore-like operations are necessary to guar-antee their mutual-exclusive access to critical sections.A previous study shows that careless use of semaphoreoperations can cause uncontrolled priority inversion,which occurs when a high-priority task is blocked bysome low-priority tasks for an unpredictable amountof time [1]. We refer to the total length of time a taskis delayed by lower-priority tasks due to resource con-tention as its blocking time. To ensure predictability, itis imperative to bound the blocking time of each task,as shown in [2]. Several e�ective solutions have beenproposed for single processor systems; two well-knownexamples are the Priority Ceiling Protocol (PCP) [1]and the Stack Based Protocol (SBP) [3].In multiprocessor and distributed systems concur-rency and distribution complicate the resource con-tention problem. A task Ti can be blocked not onlyby a local task on the same processor due to localresource contentions, but also by a remote task thatneeds some global resources also needed by Ti. Rajku-mar, et al. [4] extended PCP for single processor sys-tems to multiprocessor systems and provided an initialsolution for this problem. The extended protocol is

known as the Multiprocessor Priority Ceiling Protocol(MPCP). According to MPCP, a resource needed byremote tasks on other processors is a global resource,and the processor on which a global resource resides iscalled its synchronization processor. When a task Tigains access to a global resource, a Global Critical Sec-tion (GCS) server runs on the resource's synchroniza-tion processor on behalf of Ti. On each processor PCPis used to schedule both local tasks and GCS servers.Consequently, for each task, the total blocking timedue to both local resource contention and global re-source contention can be bounded, and whether eachtask can meet its deadline can be determined basedon this blocking time by using the schedulability con-dition for the single-processor PCP.However, the performance of MPCP is sometimespoor, especially for tasks on synchronization proces-sors. One reason is that GCS servers on each synchro-nization processor always have higher priorities thanlocal tasks. The priority inversion problem is rein-troduced when a high-priority local task is delayedby GCS servers executing on behalf of lower-prioritytasks.In this paper we propose an end-to-end approachto scheduling tasks with shared resources and to ana-lyzing their schedulability in multiprocessor systems.Section 2 gives an informal description of this ap-proach and compares and contrasts it with MPCP.Section 3 presents in detail the procedure used in theend-to-end approach. Future work is discussed in sec-tion 4.2 The End-to-End Scheduling Ap-proachFrom the viewpoint of end-to-end scheduling, a taskthat needs remote resources is viewed as a chain ofsubtasks in the following way. Each critical section



associated with a remote resource is a subtask thatexecutes on the synchronization processor of the re-mote resource. A segment that requires no resourcesor only local resources is also a subtask, and this sub-task executes on the local processor. Subtasks of thesame task collectively inherit the task's release timeand deadline, and they execute in turn. Speci�cally,if task Ti has n subtasks, subtask Ti;1 is ready for ex-ecution at the release time of Ti, and subtask Ti;j isready for execution when subtask Ti;j�1 completes, forj = 2; 3; : : :; n. The last subtask Ti;n must completeby the deadline of Ti. If task Ti is a periodic task, thisprecedence relation holds for every instance of Ti.The precedence relation among the subtasks ofeach task can be easily satis�ed by using the phase-modi�cation method proposed in [5]. Let ci;j bethe worst-case response time of Ti;j . According tothe phase-modi�cation method, once we know ci;k fork = 1; 2; : : : ; j � 1, we postpone the phase of the sub-task Ti;j by Pj�1k=1 ci;k. This modi�cation allows usto enforce the precedence relation between subtaskswhile treating the subtasks in each task as if there isno precedence relation between them. We will returnto discuss how to bound the worst-case response timesof subtasks on each processor using the schedulabilitycondition in [5], provided that the subtasks are as-signed �xed priorities and some single-processor syn-chronization protocol is used to control priority inver-sion. By summing up the worst-case response timesof all its subtasks, we can determine the worst-caseresponse time of each task, and therefore whether thetask can meet its deadline.Similar to MPCP, we allow nested resource ac-cesses. However, we impose an additional restrictionthat all resources accessed in one nested critical sec-tion must reside on the same processor. In other wordsaccesses to resources on di�erent processors cannot benested. One consequence of the end-to-end schedul-ing approach is that there is no need to control theaccesses to remote, global resources di�erently fromlocal resources. Each subtask that is a GCS server inMPCP model is local to its synchronization proces-sor. All resource contentions are resolved locally andseparately on each processor.Table 1 gives an example, Example 1. In the table,Ti denotes a task; column proc lists the processor Ti isassigned to; �i is Ti's priority; pi denotes Ti's period;and �i stands for Ti's processing time. The smallerthe value of �i, the higher Ti's priority. The systemin this example has two processors P1 and P2. Thereare two periodic tasks, T1 and T2, and one resource R.The deadline for each task is the end of its period. T1

is assigned to P1; T2 and R are on P2. The table liststhe parameters of the tasks. Speci�cally, T1 has threesegments. The �rst and the last segments need no re-source; they are executed on P1, each with processingtime 2. The middle segment requires the resource R;its processing time is 2. (The notation t(R) in the Seg-ments column indicates that the segment is a criticalsection that has duration t and accesses the resourceR.) We note that the tasks can not be scheduled ac-cording to MPCP. Since T1 needs to access R on P2,there is a GCS server running on P2 on behalf of T1.This server has a higher priority than T2. Since theprocessing time for this server is as long as T2's periodand T2 will be blocked by the GCS server wheneverthe server executes, T2 can not meet its deadline.Ti proc �i pi �i SegmentsT1 P1 2 20 6 2 2(R) 2T2 P2 1 2 1 1Table 1: Example 1 - A Simple SystemIn the end-to-end scheduling model, task T1 is di-vided into three subtasks, T1;1, T1;2 and T1;3. T1;1 andT1;3 execute on processor P1 and need no resource,while T1;2 executes on P2 and needs resource R. T1;1,T1;2 and T1;3 are dependent: the kth instance of T1;1(i.e., the instance of T1;1 in its kth period) must com-plete before the kth instance of T1;2 can begin execu-tion. Similarly, the kth instance of T1;3 cannot startexecution until the kth instance of T1;2 completes. Ta-ble 2 shows the parameters of the subtasks. �i;j is theprocessing time of subtask Ti;j, fi;j denotes the mod-i�ed phase of Ti;j, and �i;j denotes the blocking timeTi;j can experience.Ti;j proc �i;j pi;j �i;j �i;j ci;j fi;jT1;1 P1 2 20 2 0 2 0T1;3 P1 2 20 2 0 2 8T2;1 P2 1 2 1 0 1 0T1;2 P2 2 20 2(R) 0 6 2Table 2: Example 1 - Using the End-to-End Approachto Schedule the Simple SystemIn this example, there is only one critical section,and therefore there is no blocking. The priorities ofthe subtasks are assigned on rate-monotonic basis. Wesee that the worst-case response time C1 of the taskT1 is c1;1+ c1;2+ c1;3 = 10, which is less than 20, andthe worst-case response time of T2 is 1, and it is lessthan 2. We can therefore conclude that the deadlinesof both tasks are always met.



Input :1. Task set fTig. For each task Ti, the dead-line Di, period pi, processing time �i, andresource accesses;2. The task assignment mapping task set fTigto processor set fPkg;3. The resource set fRjg and the resource as-signment mapping fRjg to fPkg.Output : The conclusion whether the system canbe scheduled and the priorities assigned to sub-tasks on each processor in the case the system isschedulable.Step 1 : Map the given task set fTig to a end-to-end task set fTi;jg.Step 2 : Assign priorities to subtasks.Step 3 : Obtain the worst-case response time foreach subtask.Step 4 : Based on the results obtained in Step 3,analyze the schedulability for the whole system.Figure 1: Pseudo-Code of the End-to-End SchedulingProcedure3 Schedulability AnalysisWe now describe how to choose the prioritiesfor subtasks and determine their worst-case responsetimes. We con�ne our attention to the case wheretasks are periodic and their subtasks are assigned �xedpriorities. However, the subtasks of each task may beassigned di�erent priorities.Figure 1 gives the pseudo-code description of theend-to-end scheduling procedure.Step 1 : Map the given task set to an end-to-end task setFollowing the rules below, Step 1 breaks up eachtask Ti in the given task set into a chain of ni subtasksTi;j in the corresponding end-to-end task set :1. Each subtask Ti;j is either a critical section thatrequires some remote resources or a segment thatrequires no resource or only local resources. If a

task has nested resource accesses, each outermostcritical section is mapped to a subtask.2. A subtask that requires no resource or only localresources is on the local processor of Ti. A sub-task that requires remote resources is on the syn-chronization processor of the remote resources.3. For every j = 1; 2; : : : ; ni�1, consecutive subtasksTi;j and Ti;j+1 are on di�erent processors.Rule 3 is not necessary for the correctness of the laterdiscussion. However it allows us to obtain a tighterupper bound for the response time of each subtask.Example 2 illustrates the rules described above. Inthis example there are four resources and three proces-sors. Resource R1 is assigned to processor P1; R2 andR3 to P2; and R4 to P3. Task T1 is a periodic task. Ithas 10 segments, as shown by Figure 2. The shadedsegments denote that T1 requires some resources dur-ing those time intervals.According to Step 1, T1 is mapped into 6 subtasks,as shown by Table 3. The segment from time 0 to time6, denoted as (0,6], is mapped onto one subtask T1;1because during this time interval, T1 either does notrequire any resources or only requires local resources.According to rule 3, we map it onto one subtask, andit runs on the local processor, P1. Similarly, segment(6,10] is mapped onto the subtask T1;2 because theaccesses to R2 and R3 are nested and only the out-most critical section becomes a subtask. This subtaskruns on processor P2. Segments (16,19] and (19,22]are two di�erent subtasks, T1;4 and T1;5, because theyaccess di�erent remote resources. They run on P2 andP3 respectively. The segments (10,16] and (22,24] aremapped onto T1;3 and T1;6. They are both on P1.Ti proc pi �i;j SegmentT1;1 P1 50 6 1 2(R1) 3T1;2 P2 50 5 2(R2) 1(R2; R3) 2(R2)T1;3 P1 50 5 5T1;4 P2 50 3 3(R2)T1;5 P3 50 3 3(R4)T1;6 P1 50 3 3Table 3: Example 2 - Subtasks AssignmentStep 2 : Assign priorities to subtasksSeveral methods can be used to assign priorities.Rate-monotonic assignment is a possible choice. Otherchoices include :



����................ ���� ................ @@................ @@@ @@@@@@@................��................................ @@@@@@@@................@@@@@................ ......................... ��� ��� ��� ��� ��� .........................��� @@@@@@@@��@@@@@@ @@@@@@@��R1 R2 R3 R2 R2 R40 2 4 6 8 10 12 14 16 18 20 22 24Ti proc pi �1 SegmentsT1 P1 50 25 1 2(R1) 3 2(R2) 1(R2; R3) 2(R2) 5 3(R2) 3(R4) 3Figure 2: Example 2 - Task T1� Global-deadline-monotonic assignment: the pri-ority of a subtask is based on the global rela-tive deadline, Di, the deadline of the task Ti; theshorter Di is, the higher priority Ti;j has.� E�ective-deadline-monotonic assignment: thepriority of a subtask Ti;j is chosen based on sub-task's e�ective relative deadline. The e�ective rel-ative deadline EDi;j of Ti;j in a task Ti with nisubtasks is: Di � niXk=j+1 �i;kTi;j must complete at EDi;j units of time after Tiis released in order for Ti as a whole to completein time.Table 4 lists the priorities of subtasks in Example 3with their priorities assigned based on their e�ectiverelative deadlines.Ti proc �i pi �i;jT1;1 P1 31 50 6T1;2 P2 36 50 5T1;3 P1 41 50 5T1;4 P2 44 50 3T1;5 P3 47 50 3T1;6 P1 50 50 3Table 4: Example 2 - Priority Assignment Based onSubtasks' E�ective DeadlinesStep 3 : Determine the worst-case responsetimes for subtasksAfter Step 2 we have a set of subtasks on each pro-cessor, in which (1) every subtask requires either noresource or local resources and (2) every subtask hasa �xed priority. Resource-access-control protocols forsingle-processor systems can be used to prevent dead-locks and uncontrolled priority inversion. Both PCP

and SBP can be used in this case. Furthermore, wecan obtain the worst-case blocking time �i;j for eachsubtask Ti;j . Consequently the worst-case responsetime ci;j for each subtask can be computed accord-ing to the following equation. The derivation for thisequation can be found in [5].ci;j = PTk;l2Hi;j �k;l + �i;j1�PTk;l2H0i;j uk;l (1)In this equation Hi;j is the set of subtasks that (1) areon the same processor as Ti;j, (2) are of di�erent tasksthan Ti, and (3) have priorities equal to or higher thanTi;j. H0i;j is a subset of Hi;j in which every subtaskhas a higher priority than Ti;j. ui;j is the processorutilization factor of Ti;j . Again, �i;j is the maximumblocking time Ti;j can experience. For both PCP andSBP, �i;j can be approximated by MAX(Sk;l), whereSk;l is the maximum duration of critical sections forall possible Tk;l that (1) is on the same processor asTi;j and (2) has lower priorities than Ti;j.Step 4 : Check schedulability for the wholesystemFrom the results obtained in previous step, theworst-case response time for Ti can be obtained bysumming up all response times of its subtasks :Ci =Xj ci;j (2)If Ci > Di, where Di is the relative deadline of taskTi, we report failure for this task set. If all tasks passthis test, we report success.4 ConclusionsIn the previous section we present a procedure forapplying the end-to-end approach to scheduling taskswith shared resources in a multiprocessor system and



analyzing the schedulability. In order to make this ap-proach practical, some formulas need to be improvedand problems which may arise in practice need to beaddressed. For example, the upper bound for worst-case response time given by Eq. (1) sometimes is notsatisfactory, especially for subtasks with low priori-ties. A method based on time-demand analysis hasbeen developed to give a much tighter bound and willbe presented in a future paper.Another practical problem arises when we �x thesubtasks' phases to enforce the execution precedenceamong them. In order to make the modi�ed phasesconsistent and meaningful in a multiprocessor or dis-tributed system, clocks on all processors have to bestrictly synchronized, which can be di�cult to achievein practice. We can allow some clock drift amongprocessors, provided that the drift is within a max-imum limit of � time units. Extra � time units can beadded to the worst-case response time for each subtaskobtained in the previous section, and the executionprecedence relations among subtasks will be safely en-forced.Another solution to this problem is to use dynamicphasing for subtasks instead of static phasing used inthis paper. In other words, a subtask can be triggeredto start as soon as its previous subtask �nishes. Weare currently working on the schedulability analysisfor such systems.An alternative way to map tasks to subtasks is tomap all critical sections, both for local resources andfor remote resources, into subtasks. The resultant tasksystem has end-to-end processing not only across pro-cessors but also within each processor. A study in [6]has shown that schedulability analysis for end-to-endprocessing within a processor is possible and promis-ing. We are currently studying the schedulability anal-ysis for such systems.In this paper we assume that all resources accessedin one nested critical section must be on the sameprocessor. This assumption in general can be overlyrestrictive. We will address this problem from thepoint of view of both resource access control andtask/resource assignment. Ideally we want to assignresources to processors to minimize the number ofnested critical sections that access resources on morethan one processor.In many ways, the end-to-end scheduling approachcan be viewed as a divide-and-conquer approach: it di-vides the problem by mapping the given task set ontoan end-to-end task set where each processor becomesrelatively independent. It then resolves the local re-source contention on each processor. Finally combines

the results to obtain a global solution. This meritleads to a reduction in the complexity of the resourcecontention problem.AcknowledgementsThis work was partially supported by NSF contractNo. NSF MIP 92-22408 and US Navy ONR contractNo. N0001492J1815. The authors thank all mem-bers in Real-Time Systems Laboratory at Universityof Illinois for many informative and inspiring discus-sions, in particular, Too-Seng Tia for many in-depthdiscussions about MPCP model.References[1] L. Sha, R. Rajkumar and J. P. Lehoczky, \PriorityInheritance Protocols: An Approach to Real-TimeSynchronization". IEEE Transactions on Comput-ers, Vol. 39, No. 9, September 1990.[2] R. Rajkumar, Task Synchronization In Real-TimeSystems, Kluwer Academic Publishers, Boston1991.[3] T. P. Baker, \A Stack-Based Resource AllocationPolicy for Real-Time Processes". Proceeding of the11th Real-Time Systems Symposium, pp. 191-200,1990.[4] R. Rajkumar, L. Sha and J. P. Lehoczky, \Real-Time Synchronization Protocols for Multiproces-sors". Proceeding: Real-Time Systems Symposium,pp. 259-269, 1988.[5] R. Bettati, \End-to-End Scheduling to Meet Dead-lines in Distributed Systems". Ph.D. thesis, De-partment of Computer Science, University of Illi-nois at Urbana-Champaign, March 1994.[6] M. G. Harbour, M. H. Klein, and J. P. Lehoczky,\Timing Analysis for Fixed-Priority Scheduling ofHard Real-Time Systems", IEEE Transactions onSoftware Engineering, Vol. 20, No. 1, pp. 13 - 28,January 1994.


