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Abstract

This paper focuses on the problem of providing run-
time support to real-time applications and non-real-time
applications in an open system. It describes a two-level
hierarchical priority-driven scheme for scheduling inde-
pendently developed applications. The scheme allows the
developer of each real-time application to validate the
schedulability of the application independently of other
applications. Once a real-time application is created and
accepted by the open system, its schedulability is guaran-
teed regardless of the behaviors of other applications that
execute concurrently in the system.

1 Introduction

Most existing real-time applications are implemented
on stand-alone, embedded systems or on dedicated com-
puters. Their schedulability is determined by analyzing
all the applications together. With tremendous advances
in hardware technologies, it is now possible to run real-
time applications on fast, general purpose workstations
and personal computers concurrently with non-real-time
applications. A challenging problem is how to sched-
ule an open system of complex, independently developed
real-time applications and non-real-time applications. A
scheduling scheme for this purpose should meet the fol-
lowing objectives.

1. Tt allows the developer of each real-time application
to validate the schedulability of the tasks in the ap-
plication in isolation from other applications.

2. It has a simple acceptance test according to which
the operating system can determine whether to ad-
mit a new real-time application into the system
without having to analyze the schedulability of all
the existing applications together with the new one.

3. Once the operating system admits a real-time ap-
plication into the system, it guarantees the schedu-
lability of tasks in the application.

4. The system maintains a certain level of responsive-
ness for non-real-time applications.

5. It does the above without relying on fixed alloca-
tion of time/resources or fine-grain time-slicing and,
consequently, is suited for applications with vary-
ing time/resource demands and stringent timing re-
quirements.

In this paper, we describe a two-level hierarchical
scheme that meets these objectives. The scheme as-
sumes that when the operating system admits a new
real-time application into the system, it creates a dedi-
cated constant utilization server to execute the applica-
tion. (We will return shortly to describe the server.) All
non-real-time applications are executed by one constant
utilization server. At the top level, the operating system
allocates processor time to the servers, sets their dead-
lines, and schedules the servers according to the earliest-
deadline-first (EDF) algorithm. At the low level, the
scheduler of the server for each application schedules the
tasks in the application according to a priority-driven
algorithm chosen for the application. The scheduling
algorithm for each real-time application can be either
preemptive or nonpreemptive. We show here that the
schedulability of any application containing arbitrary
tasks can be validated independently of other applica-
tions if the application uses a nonpreemptive scheduling
algorithm. If the application uses a preemptive schedul-
ing algorithm, it can be validated independently if it
consists solely of periodic tasks. Non-real-time applica-
tions are scheduled in a time-sharing fashion.

Following this introduction, Section 2 describes the
system model we use in this paper and states our as-
sumptions. It also describes the constant utilization
server, which is the type of the dedicated servers we
use to execute all applications. Section 3 presents a
sufficient schedulability condition of the EDF algorithm
when used to schedule independent, preemptable spo-
radic tasks in general and constant utilization servers in
particular. Sections 4 presents a sufficient schedulability
condition of real-time applications in the open system.
Section 5 gives the algorithms which the operating sys-
tem uses to maintain the servers for different types of
applications so that the schedulability of each real-time
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Figure 1: Open System Model

application can be determined in isolation from other
applications in the system. Section 6 discusses related
work, and Section 7 is a summary.

2 Background and Assumption

According to the model adopted in this paper, an
open system has a processor with speed equal to one.
The workload on the processor consists of real-time ap-
plications, denoted by Ag, k = 1,2, and so on, and non-
real-time applications. We assume that every real-time
application A would be schedulable if it were executed
alone on a slow processor with speed o < 1. In the open
system, each real-time application Ag is executed by the
constant utilization server Si, for £ > 1, and all the
non-real-time applications are executed by the constant
utilization server So. As shown in Figure 1, each server
has a ready queue containing application jobs that are
ready to be executed by the server.

2.1 Constant Utilization Server

A constant utilization server is defined by its server
size U, which is the fractional processor utilization allo-
cated to the server. We assume that the execution time
of every job in every real-time application is known af-
ter the job is released, and let the execution time of the
job J; in the ready queue of a server for a real-time ap-
plication be e;. The execution times of jobs in non-real-
time applications are unknown. These jobs are scheduled
among themselves on a round-robin basis, one time slice
at a time. Hence, the execution time of the job at the
head of the ready queue of the server Sy is equal to the
length of the time slice.

Each constant utilization server becomes eligible for
execution when the operating system gives it some (> 0)

execution budget. The budget is consumed (i.e., de-
creased by one unit per unit of time) whenever the server
executes. The server is no longer eligible for execution
when its budget is exhausted (i.e., the budget becomes
zero). It becomes eligible for execution again when the
operating system replenishes its budget (i.e., sets its
budget to some positive value again).

Specifically, the operating system replenishes the
server budget and sets the server deadline of a constant
utilization server of size U according to the following
rules. In the statement of these rules, b is either equal
to the execution time e; of the job J; at the head of the
ready queue of the server if the scheduling algorithm of
the application is nonpreemptive, or is equal to a value
no greater than e; if the scheduling algorithm of the ap-
plication is preemptive. We will return in Sections 4 and
5 to discuss how to choose this value in the latter case.

1. Initially, the budget of the server is zero, and the
deadline d is also zero.

2. When a job J; with execution time e; arrives (i.e., is
released and placed in the ready queue of the server)
at time r; while the ready queue is empty,

(a) if d < 7y, set the server budget to b and dead-
line d to r; + b/U;

(b) otherwise do nothing.
3. At the deadline d of the server,

(a) if a job J; with execution time e; is waiting at
the head of the ready queue, set the budget to
b and move the deadline to d + b/U;

(b) otherwise do nothing.

The server behaves like a task with a constant utiliza-
tion U if its ready queue is never empty, thus the name
Constant Utilization Server. This server algorithm is
essentially the same as the total bandwidth server al-
gorithm proposed by Spuri and Buttazzo [7]. (We will
discuss their difference in Section 6.)
2.2 Scheduling Hierarchy

The applications are scheduled and executed accord-
ing to a two-level hierarchical scheme. Again, at the
top level, the scheduler provided by the operating sys-
tem maintains all the servers. It replenishes the server
budget and sets the server deadline for every server in
the system, and schedules all the servers in the system
according to the earliest-deadline-first (EDF) algorithm.
(Hereafter, we refer to this scheduler as the OS sched-
uler.)

When the system starts, the operating system cre-
ates the server Sy for non-real-time applications. The
OS scheduler always admits non-real-time applications,



but it admits a real-time application into the system
only when the application meets the condition described
in Section 5. When the OS scheduler admits a new
real-time application Ag, the operating system creates
a server Sy with server size U to execute Ag. (Section
4 will discuss the server size Uy required to ensure the
schedulability of the application.) When the application
Ay terminates, the operating system destroys the server
Sr. We assume that the total server size of all constant
utilization servers in the system is less than or equal to
one at all times.

At any time, the system consists of a number of
servers, as shown in Figure 1. Each server S; has a
ready queue that contains ready-to-run jobs to be ex-
ecuted by the server. When the OS scheduler selects
a server to execute, the server executes the job at the
head of its ready queue. The server Sy for each real-
time application Az in the system also has a low-level,
server scheduler, which schedules ready-to-run jobs in
Ay and places them in priority order in the ready queue
of S;. The server scheduler is a part of the application.
In contrast, the operating system schedules all the non-
real-time applications. The net effect is that all the non-
real-time applications appear to be running in a slower
time-sharing environment.

More specifically, when a job of a real-time applica-
tion Ay is released, the operating system invokes the
server scheduler of the server S;. The server scheduler
then inserts the newly released job in the proper location
in the server’s ready queue according to the scheduling
algorithm used by the server scheduler. We assume that
the algorithm used by every server scheduler is a simple
priority-driven algorithm. The time taken for inserting
the newly released job into the ready queue is either neg-
ligibly small compared with the execution times of all the
jobs in the system or is accounted for by including the
server scheduler as a task of A; when determining the

schedulability of Ag.

3 Schedulability Condition of Sporadic
Jobs With EDF Algorithm

We say that a constant utilization server is schedulable
if every time after the server budget and deadline are set,
its budget is always exhausted at or before its deadline.
To state this fact in another way, we can view each server
as a sporadic task in which a job with execution time
equal to the server budget and deadline equal to the
server deadline is released each time the server budget
is replenished. The server is schedulable when every job
of it completes by its deadline.

We present here a general schedulability condition
that implies the schedulability condition of constant uti-
lization servers. The general condition is for a stream of
independent, preemptable sporadic jobs. Each sporadic

job J; is characterized by its release time r;, execution
time e; and deadline d;. The ratio e;/(d; — r;) is the
density of the job J;, and the interval (r;, d;] is its active
interval. We say that J; i1s an active job in the system
at any time instant ¢t € (r;, d;], but is not an active job
outside this interval. Theorem 1 below gives a sufficient
schedulability condition for sporadic jobs when they are
scheduled on the EDF basis.

Theorem 1: A system of independent, preemptable
sporadic jobs is schedulable according to the EDF al-
gorithm if at any time instant, the total density of all
active jobs in the system is less than or equal to one.

Proof: We prove the theorem by contradiction. To
do so, we suppose that a job misses its deadline at time
t, and there is no missed deadline prior to ¢t. Let ¢’ be the
latest time before ¢ at which either the system idles or
some job with a deadline after ¢ executes. Suppose that
during the interval (¢, %], the system executes n sporadic
jobs, Ji,J3, -+, Jp, ordered in increasing order of their
deadlines. Job J, is the one that misses its deadline.

We call either the release of a job, or the completion of
a job, or a job missing its deadline a system event. Sup-
pose that during the interval (¢',¢], there are m system
events, ordered in ascending order of their occurrences.
Let ¢; denote the time instant when event ¢ occurs, where
1 =1,2,---,m. We must have ¢t; = ¢’ and ¢,, = ¢. The
entire interval (¢',t] is partitioned into m — 1 disjoint
sub-intervals, (¢1, 2], (f2,%3],- -, (bm—1,%m]. By the def-
inition of system events, in each sub-interval, active jobs
in the system remain unchanged, and so does the total
density of all the active jobs. Let A; denote the subset
containing all the jobs that are active during the sub-
interval (%;,%;41] for 1 < 4 < m — 1 and u; denote the
total density of the jobs in A;.

We note that
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which is clearly a contradiction. O

The following Corollary follows straightforwardly
from Theorem 1. Our open system consists of only con-
stant utilization servers. Because the total server size is
less than or equal to one, all servers are schedulable.

Corollary 2: In a system of a varying number of in-
dependent, preemptable periodic tasks whose deadlines
are equal to their respective periods and a varying num-
ber of constant utilization servers, if the total utilization
U, of all the periodic tasks and the total server size U,
of all the servers are such that U, + U, < 1 at all times,
then all periodic tasks and all servers are schedulable
according to the EDF algorithm.

4 Schedulability Condition of Real-Time
Applications

We are now ready to discuss the schedulability condi-
tion under which a real-time application Ay is schedula-
ble when it is running in an open system. As stated ear-
lier, we assume that A would be schedulable according
to some scheduling algorithm if it were executed alone on
a slow processor with speed o < 1. We want to answer
here the question under what condition the application
Ay 1s schedulable in the open system if its server Sk,
working according to the constant utilization server al-
gorithm, is schedulable.

To gain some insight, we first examine the following
example. Suppose that the application Ay uses the EDF
algorithm to schedule its jobs, and A; has two jobs,
J1(0,a,10a + 4) and J3(a,1,a+4), where @ > 0. (Three
numbers in parenthesis represent release time, execution
time and deadline of the job, respectively.) The appli-
cation Ay is schedulable if it executes alone on a slow
processor with speed o equal to 0.25, as shown in Fig-
ure 2(a). Now suppose that the application Ay is exe-
cuted by the server Si with server size Uy in the open
system. Figure 2(b) shows a possible schedule of Ag.
At time 0, job Jj is released, the OS scheduler sets the
budget of server Si to a and deadline to a/U. Sk may
have the earliest deadline among all servers in the sys-
tem during interval (0,a), and it starts to execute Jy
immediately. At time a, the budget of server Si is ex-
hausted, and job J; completes. At the same time, job J;
arrives. But since the deadline of server S is a/Uy, the
server budget is replenished at that time. Therefore, job
J2 stays in the ready queue of Sy waiting for the server
budget to be replenished. At time a/Uy, the operating
system sets the budget of server S to 1 and deadline to
(a+1)/Ug. Jz is guaranteed to complete at (@ + 1)/U.
To meet J’s deadline, we must have (a+1)/Ux < a+4,
or Uy > (a+1)/(a+4). Since a is an arbitrary positive
number, J is guaranteed to meet its deadline only when
Ur = 1. This means that no other application can be
scheduled on the fast processor!
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(c). Fast Processor (with proper amount of budget replenishment)

Figure 2: Schedules of Application Ay

This example illustrates that budget of the server Sy
cannot always be set to the execution time of the job
at the head of Si’s ready queue. Otherwise, we cannot
guarantee that the application Ay is schedulable in the
open system even when Aj is schedulable on a slower
processor and the server Sj is schedulable, except when
the size Uy of server S is one. The following theorem
states that, when the operating system replenishes the
server budget in a proper manner, we can guarantee the
schedulability of the application Ag in the open system
if the server Sy for Ay has size o < 1 and is schedulable.

Theorem 3: If a real-time application A; would be
schedulable according to some scheduling algorithm if
it were executed alone on a slow processor with speed
ok < 1, it is also schedulable on a fast processor with
speed one when it is executed by a constant utilization
server Si in the two-level scheduling hierarchy described
in Section 2, provided that all the following conditions
are true.

1. The server S; has server size o and is schedulable
in the open system.

2. When the operating system sets the budget of the
server Sk, the replenished budget never exceeds the



remaining execution time of the job at the head of
Sk’s ready queue.

3. During any interval (¢, d) between the time instant
t when the operating system replenishes the budget
of the server S and the corresponding deadline d of
the server, there would be no context switch among
the jobs in the application Ay if Ay were executed
alone on the slow processor with speed oy.

The proof of this theorem follows directly from the
following lemma. Let ¢, denote the time when the op-
erating system replenishes the budget of the server Si
for the m-th time and sets its deadline to d,, for m > 1.
We say that a job attains z units of time in an interval,
or its attained time in the interval is z, if its remaining
execution time is z units less at the end of the interval
than that at the beginning of the interval.

Lemma 4: When the conditions stated in Theorem
3 are true, the same job in Ay executes and attains the
same time (dy, —tm )0k on both the slow and the fast pro-
cessors during any interval (¢m,,dm ), for all m > 1, and
no other jobs in Ay execute on either processor during
that interval.

Proof: We prove the lemma by induction on the in-
dex m. On the fast processor, the operating system sets
the budget of the server S; when the first job J; of Ay
arrives at ¢;. The deadline of the server Ay is set to dj.
According to the three conditions stated in Theorem 3,
we have e; > (d1 —t1)ok, and there is no context switch
among jobs in Ay during the interval (¢1,d1). Since Sk
is schedulable, during the interval (¢1, d1), the server Sy
executes J; and Jy attains (d1 — ¢1)o% units of time on
the fast processor. Similarly, if Ay executes alone on the
slow processor, J; also attains this amount of time in
this interval. Moreover, no other jobs in Ay execute on
either processor during (¢1, d1).

Now suppose that during each interval (¢m,dn) for
m=1,2,---, 7, the the same job in Ay executes and at-
tains (dm — tm )0 units of time on both processors, and
no other jobs in Ay execute on either processor during
the interval. At time d;, every ready job J; in Ay either
has completed on both processors, or if not completed,
has attained the same time on both processors. There-
fore, on both processors at time d;, either the same job
in A has the highest priority or no job in Aj is ready.
Let J,; denote the highest priority ready job in Aj at
time d; or the first job in Ay released after d; if there is
no ready job in Ay at dj. Let ¢’ denote the earliest time
J; is ready for execution at or after d;.

The slow processor starts executing J, at ¢’. On the
fast processor, the OS scheduler sets the budget and
deadline of the server Sy at time ¢j41 = ¢'. The deadline
is set to d;41. Again according to the three conditions
stated in Theorem 3, we have e} > (dj;1 — tjy1)0%,

where e, is the remaining execution time of J;, and there
is no context switch among jobs in Ay during the interval
(tj+1,dj+1). Therefore, during the interval (¢j11,d;j41),
job J, executes on the slow processor continuously and
attains (dj41 — tj4+1)o% units of time, and on the fast
processor, the server S; executes J, and allows it to
attain the same amount of time. No other jobs in Ag
execute on either processor during interval (¢j41,d;4+1).
O

Lemma 4 in essence says that when the conditions
stated in Theorem 3 are true, the constant utilization
server Sy with size o executing on the fast processor
emulates a slower processor with speed ox. To see why
Theorem 3 follows directly, we note that during each
interval (tm,dm) for m > 1, only one job in Aj exe-
cutes on the slow processor and the attained time of
the job is (dm — tm)or units. Hence, the slow proces-
sor never idles during any interval (tn,,dm), and ev-
ery job in Ax can complete only at the end of such
an interval. According to Lemma 4, if J; executes
during the intervals (¢m,, dm, ), (bmss Gmsz)s -+ (bmys Gmy)
and completes at time d,,, on the slow processor, it
also executes on the fast processor during the intervals
(tmys @my )y (bmay Gma )y o -« 5 (bmy, m, ) and completes at or
before time d,,, on the fast processor. Therefore, if all
jobs in application A meet their deadlines on the slow
processor, they also meet their deadlines when executed
by server Sy on the fast processor.

We now return to the example given earlier in this
section. If Aj were executed on a slow processor with
speed 0.25, J; would preempt J; at time a. Condition
3 in Theorem 3 does not hold. Indeed the application
Ay is not schedulable if the server budget is replenished
and its deadline set as described. However, suppose that
we let the OS scheduler set the server budget according
to the three conditions stated in Theorem 3. At time 0,
when job Ji is released, the operating system sets the
budget of server Si to a/4 and deadline to a. At time a,
when job J; is released and becomes the job at the head
of Si’s ready queue, the server deadline just expires.
The OS scheduler immediately sets the budget of Sk to
1 and deadline to a + 4. Job Jz completes at or before
the server deadline at @ + 4, thus meets its deadline. At
time a + 4, J1 becomes the job at the head of Si’s ready
queue with remaining execution time 3a/4. The server
budget is set to 3a/4 and deadline is set to 4a+4. At or
before time 4a + 4, job J; completes. Figure 2(c) shows
a possible schedule of the application.

5 Scheduling Algorithm for Real-Time
Applications in Open System

We now describe in detail the two-level scheduling al-
gorithm which we briefly described in Section 2. Figure
3 shows the operations of the OS scheduler. Specifically,



let U; denote the total size of all the servers in the system
when an application Ay is created and requests for ad-
mittance into the system. Again, Ay is schedulable on a
slow processor with speed oy. The operating system ad-
mits the application into the system and creates a server
Sy with size o to execute the application if Uy + o3 < 1.
Otherwise it rejects the application. If it accepts the ap-
plication, it schedules the server Si for the application
together with existing servers on the EDF basis.

The ways the OS scheduler maintains the server Sg
and its interaction with the server scheduler depend on
whether the server scheduling algorithm is preemptive
or nonpreemptive and whether the jobs in the applica-
tion contend for resources amongst themselves. (We as-
sume here that applications do not contend for global
resources, that is, the resources shared among jobs of
different applications.) The OS scheduler replenishes
the budget and sets the deadline of each server for each
application so that the conditions in Theorem 3 are sat-
isfied. It always sets the server budget to the maximum
value that satisfies conditions 2 and 3 stated in Theorem
3 in order to reduce the number of times the budget and
deadline of the server Sy are set, thus minimizing the
overall scheduling overhead. In other words, when the
OS scheduler sets the budget of the server Si at time ¢,
the budget is set to min{el, (' — t)or}, where €] is the
remaining execution time of the job J; at the head of
St’s ready queue and ¢’ is the earliest possible time that
a context switch could happen among jobs in application
Ay if Ay, were executed alone on the slow processor with
speed 0.

5.1 Real-Time Applications with Nonpre-
emptive Scheduler

Figure 4 shows the actions taken by the OS scheduler
to maintain the server Sy for a nonpreemptive applica-
tion Ag. The application has a stream of independent
sporadic jobs J;,72 = 1,2, - -, each of which is character-
ized by its release time r;, execution time e;, and dead-
line d;. The release time of any job need not to be known
a priori, but we assume that the execution time of every
job in Ay becomes known after it is released. The appli-
cation’s scheduler schedules the jobs in A according to
some nonpreemptive scheduling algorithm in such a way
that Ay is schedulable by itself on a slow processor with
speed o < 1. Whenever the server Si is scheduled, it
executes the job at the head of its ready queue. The cor-
rectness of this two-level algorithm is given by Theorem
5.

Theorem 5: If a real-time application Ay consisting
of independent sporadic jobs is schedulable on a slow
processor with speed oy < 1 by itself according to some
nonpreemptive scheduling algorithm, it is also schedula-
ble on the fast processor with speed one according to the
two-level scheduling algorithm where the OS scheduler

Initiation:

e Create a constant utilization server Sy with size Uy for
non-real-time applications.

o Set the budget and deadline of server Sy to infinity.

o Set the total server size U; of all servers in the system
to Uo.

Acceptance Test and Admission of A:

When each new application Aj requests for admittance,
providing the speed oy of the slow processor on which A
is schedulable in its admission request, if Uy + o > 1,

reject Ak, otherwise, admit Ay, and

e create a constant utilization server S with size ox

for Ag,
o set server budget and server deadline d to zero, and

e increase U; by o.

Maintenance of each server Sg:

Maintain each server Si in ways described in Figures 4,
5, or 6 depending on the type of application executed by
Sk.

Interaction with server scheduler of each server Si:

o When every job J; in the application Ay is released, in-
voke the server scheduler of S to place J; in the proper
location in Sk’s ready queue.

o If the application Ay uses a preemptive scheduling algo-
rithm, before replenishing the budget of Sk, invoke the
server scheduler of Sk to update the occurrence time ¢

of the next application event of Ag.
Scheduling of all servers:

Schedule all servers on the EDF basis.

Figure 3: Operations of the OS scheduler

works as described in Figures 3 and 4, provided that the
total server size of other existing servers is no more than
1-— Ofk.

Proof: According Corollary 2, all the servers, includ-
ing Sk, are schedulable. It is easy to see that all three
conditions stated in Theorem 3 are true. Hence Theorem
5 is true. O

5.2 Real-Time Applications with Preemp-
tive Scheduler

We now consider a real-time application Ay that is
schedulable by itself on a slow processor with speed
or < 1 by some preemptive scheduling algorithm (e.g.,
EDF, RM or DM). In this case, we require that the jobs



Maintenance of server Si:

1. When a new job J; of Ay arrives at t,

(a) invoke the server scheduler of Sk to place J; in the
proper location in Sk’s ready queue, and
(b) if the current server deadline d < ¢, set the server

budget to e; and server deadline d to t + e;/o.

2. At the deadline d of the server S, if its ready queue
is not empty and job J; is at the head of the ready
queue, set the server budget to e; and server deadline d

tod+ ei/ok.
3. When the application Aj terminates,

(a) delete Sk from the system, and
(b) decrease U; by o.

Figure 4: Maintenance of Server Sy for a Nonpreemptive
Application Ay

in each task T; in the application be released periodi-
cally. Specifically, each task T; in Ay is characterized by
its phase r; and period p;, meaning that the j-th job of
task T; has release time r; + (j — 1)p;, and this release
time is known a priori. However, unlike the usual peri-
odic tasks, the jobs in each task T; may have different
execution times and relative deadlines. We assume that
the execution time e,, of every job J,, becomes known
after J,, is released.

Figure 5 shows the actions taken by the OS scheduler
to maintain the server Si for such an application. The
term application event in the description refers to either
the release or the completion of a jobin Ag. At any time
t, the next application event is the application event that
would have the earliest possible occurrence time after ¢
if the application Ay were executed alone on the slow
processor. Let t' denote the earliest release time of any
job of the application Ai after ¢. Then at time ¢, the
next application event occurs either at ¢, if the ready
queue of server S is empty at ¢, or at min{t',t+e€}/or},
if the job J; at the head of the ready queue has remaining
execution time ej.

As shown in Figure 5, the maintenance of a server for
a preemptive application is more complicated than that
of a server for a nonpreemptive application. The added
complication arises from the need for the server sched-
uler of each server Sy to compute the occurrence time
ty of the next application event in the application Ay
executed by Si. This computation can be done in O(N)
time when Aj contains N tasks. The OS scheduler sets
the budget and deadline of the server S based on the

Maintenance of server Si:

1. When a new job J; of Ay arrives at ¢, invoke the server
scheduler of Sk to place J; in the proper location in Si’s
ready queue, and set J;’s remaining execution time e;
to e;. If the current server deadline d < ¢,

(a) invoke the server scheduler of S to update the
occurrence time ¢t of the next application event of

Apg,

(b) set the server budget to (tx —t)ok and server dead-
line d to tx, and

(c) decrease the remaining execution time e} of J; by

(tk — t)ak.

2. At the deadline d of the server Sk, if its ready queue is
not empty and job J; is at the head of the ready queue,

(a) invoke the server scheduler of S to update the
occurrence time ¢t of the next application event of

Apg,

(b) set the server budget to (tx —d)ox and server dead-
line d to tx, and

(c) decrease the remaining execution time e} of J; by

(tk — d)ak.
3. When the application Aj terminates,

(a) delete Sy from the system, and
(b) decrease U; by o.

Figure 5: Maintenance of Server S for a Preemptive
Application Ay

occurrence time t; of the next application event. For this
reason, this scheme works only when the release times of
jobs are known. The correctness of this two-level algo-
rithm for preemptive applications is given by Theorem
6, which follows straightforwardly from Corollary 2 and
Theorem 3.

Theorem 6: If a real-time application Ay consisting
solely of independent tasks whose jobs are released pe-
riodically is schedulable on a slow processor with speed
ok < 1 by itself according to some preemptive schedul-
ing algorithm, it is also schedulable on the fast processor
with speed one according to the two-level scheduling al-
gorithm where the OS scheduler works as described in
Figures 3 and 5, provided that the total server size of
other existing servers is no more than 1 — oy.

5.3 Resource Consideration

Oftentimes, tasks in a real-time application share log-

ical or physical resources. In this section, we consider a



preemptive application Ay of tasks that share local re-
sources. These resources are not used by tasks in appli-
cations other than Aj. Again we require that the jobs
in each task be released periodically, so that we know
their release times. Further, we assume that after a job
in Ay is released, we know what resources it will use,
when it will request for the resources, and how long it
will hold the resources. Suppose that the application Ay
is schedulable by some preemptive scheduling algorithm
(e.g., RM, DM or EDF) and resource access protocol
(e.g., PCP or SBP) when it executes alone on a slow
processor with speed o < 1. The question we want to
answer here is how should the server for such an applica-
tion A be maintained by the OS scheduler so that the
application is schedulable in the open system.

To take resource contention into consideration, the
OS scheduler must react to two types of application
events in addition to job releases and completions. These
additional application events are requests for resource
and releases of resource by jobs in Ag. Accordingly, the
calculation of the occurrence time of the next applica-
tion event after any time ¢ is changed as follows. Let ¢’
denote the earliest release time of any job of the appli-
cation Ay after ¢, and J; be the job at the head of the
ready queue of the server Si at time ¢. Let e} denote
the amount of time J; must attain to reach the point
when J; either completes, or requests for a resource or
releases a resource, whichever occurs the earliest. (This
can be computed when the remaining execution time e}
of the job J; is known.) At time ¢, the occurrence of the
next application event is either ¢' if the ready queue is
empty, or min{t',t + e}/ /ot } if J; is at the head of the
ready queue.

Figure 6 shows the actions taken by the OS scheduler
to maintain the server Sy for a preemptive application
Ay with local resource contention. As shown in the fig-
ure, the operations of the OS scheduler are further com-
plicated by the need for handling resource requests by
jobs in the application Ag. Specifically, when a job J;
in the application A requests for a resource or releases
a resource, the server scheduler may need to change the
priorities of some jobs in A and sort the jobs in its ready
queue according to the resource access protocol used by
Ay. For example, if Ay uses PCP algorithm, when the
highest priority job J; requests for a resource which is
held by job J;, the server scheduler changes the priority
of J; to the priority of J; and move J; to the head of
its ready queue. We note that the budget of the server
Sk 1s exhausted every time a job in Ay requests for a
resource or releases a resource. At the deadline of the
server Sg, the OS scheduler invokes the server scheduler
to update the occurrence time t; of the next application
event of Ak, and sets the budget and deadline of Sy ac-
cordingly. Again all conditions stated in Theorem 3 are

Maintenance of server Si:

1. When a new job J; of Ay arrives at ¢, invoke the server
scheduler of Sk to place J; in the proper location in Si’s
ready queue, and set J;’s remaining execution time e;
to e;. If the current server deadline d < ¢,

(a) invoke the server scheduler of S to update the
occurrence time ¢t of the next application event of
Ag,

(b) set the server budget to (tx —t)ok and server dead-
line d to tx, and

(c) decrease the remaining execution time e} of J; by

(tk — t)ak.
2. At the deadline d of the server Sk, if its ready queue is
not empty and job J; is at the head of the ready queue,

(a) invoke the server scheduler of S to update the
occurrence time ¢t of the next application event of

Apg,

(b) set the server budget to (tx —d)ox and server dead-
line d to tx, and

(c) decrease the remaining execution time e} of J; by

(tk — d)ak.

3. After a job J; requests for a resource or releases a re-
source, invoke the server scheduler to change the priori-
ties of some jobs if necessary and move the job with the
highest priority to the head of its ready queue.

4. When the application Aj terminates,

(a) delete Sy from the system, and
(b) decrease U; by o.

Figure 6: Maintenance of Server S for a Preemptive
Application Ay With Resource Contention

met. Hence, the following theorem stating the correct-
ness of this two-level algorithm is true.

Theorem 7: If a real-time application Ay consisting
solely of independent tasks that share local resources and
whose jobs are released periodically is schedulable on a
slow processor with speed o3 < 1 by itself according to
some preemptive scheduling algorithm, it is also schedu-
lable on the fast processor with speed one according to
the two-level scheduling algorithm where the OS sched-
uler works as described in Figures 3 and 6, provided that
the total server size of other existing servers is no more
than 1 — oy.



6 Related Work

As mentioned in Section 2, the constant utilization
server algorithm is essentially the same as the total band-
width server algorithm proposed by Spuri and Buttazzo
[7]. The only difference between these two server algo-
rithms is that according to the total bandwidth server
algorithm, when a job at the head of the server’s ready
queue completes, the server budget is replenished imme-
diately if the ready queue is not empty, while according
to the constant utilization server algorithm, this is not
done until the current server deadline. We use the con-
stant utilization servers to execute the applications with
hard deadlines in the open system. There is no benefit
in completing jobs in these applications early, as long as
they meet their deadlines.

The constant utilization server algorithm is also sim-
ilar to the preemptive fair queueing and virtual clock al-
gorithms proposed for network traffic scheduling [8, 9].
A processor with speed C can be thought of as a com-
munication link with link capacity C, and a constant
utilization server Si with server size Uy can be thought
of as a connection with reserved bandwidth U, C. The
two-level hierarchical scheduling algorithm proposed in
this paper can be used to schedule multiple real-time
message streams on each of the connections sharing the
same output link of a network switch.

7 Summary

This paper presented a solution to the problem of
scheduling real-time applications and non-real-time ap-
plications in an open system. The solution is in the form
of a two-level hierarchical algorithm. We have shown
that the two-level scheme emulates the infinitesimally
fine-grain, weighted round-robin algorithm. In essence,
when operating system admits a real-time application
which requires a fraction o of the processor bandwidth
to meet all of the timing constraints, it provides the ap-
plication with a virtual slow processor with speed o and
protects the application from interference from other ap-
plications.

The scheduling algorithms at both levels in our two-
level scheme are priority-driven. The context switch
overhead of the system is equal to that incurred in a
dynamic priority system, which is much smaller than
that of the fine-grain round robin scheme.

To simplify our description, Figure 3 says that the
budget and deadline of server Sy for non-real-time appli-
cations are set to infinity. In essence, the non-real-time
applications are scheduled in the background in the open
system described here. We can improve the responsive-
ness of non-real-time applications by making Sy a total
bandwidth server. In that case, we would replenish its
budget periodically every time slice or a few slices.

We have assumed that the OS scheduler can preempt

the servers at any time. In general, the preemption of
a server may be delayed because it is in a nonpreempt-
able section (e.g., when the application served by it is
making a system call). We can account for the effect of
nonpreemptivity and resource contention among appli-
cations on the schedulability of the applications in the
well-known ways [4, 5].
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