
Proceedings of 9th Euromicro Workshop on Real-Time SystemsA Scheme for Scheduling Hard Real-Time Applications in OpenSystem EnvironmentZ. Deng J. W.-S. Liu J. SunDepartment of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbana, IL 61801AbstractThis paper focuses on the problem of providing run-time support to real-time applications and non-real-timeapplications in an open system. It describes a two-levelhierarchical priority-driven scheme for scheduling inde-pendently developed applications. The scheme allows thedeveloper of each real-time application to validate theschedulability of the application independently of otherapplications. Once a real-time application is created andaccepted by the open system, its schedulability is guaran-teed regardless of the behaviors of other applications thatexecute concurrently in the system.1 IntroductionMost existing real-time applications are implementedon stand-alone, embedded systems or on dedicated com-puters. Their schedulability is determined by analyzingall the applications together. With tremendous advancesin hardware technologies, it is now possible to run real-time applications on fast, general purpose workstationsand personal computers concurrently with non-real-timeapplications. A challenging problem is how to sched-ule an open system of complex, independently developedreal-time applications and non-real-time applications. Ascheduling scheme for this purpose should meet the fol-lowing objectives.1. It allows the developer of each real-time applicationto validate the schedulability of the tasks in the ap-plication in isolation from other applications.2. It has a simple acceptance test according to whichthe operating system can determine whether to ad-mit a new real-time application into the systemwithout having to analyze the schedulability of allthe existing applications together with the new one.3. Once the operating system admits a real-time ap-plication into the system, it guarantees the schedu-lability of tasks in the application.4. The system maintains a certain level of responsive-ness for non-real-time applications.

5. It does the above without relying on �xed alloca-tion of time/resources or �ne-grain time-slicing and,consequently, is suited for applications with vary-ing time/resource demands and stringent timing re-quirements.In this paper, we describe a two-level hierarchicalscheme that meets these objectives. The scheme as-sumes that when the operating system admits a newreal-time application into the system, it creates a dedi-cated constant utilization server to execute the applica-tion. (We will return shortly to describe the server.) Allnon-real-time applications are executed by one constantutilization server. At the top level, the operating systemallocates processor time to the servers, sets their dead-lines, and schedules the servers according to the earliest-deadline-�rst (EDF) algorithm. At the low level, thescheduler of the server for each application schedules thetasks in the application according to a priority-drivenalgorithm chosen for the application. The schedulingalgorithm for each real-time application can be eitherpreemptive or nonpreemptive. We show here that theschedulability of any application containing arbitrarytasks can be validated independently of other applica-tions if the application uses a nonpreemptive schedulingalgorithm. If the application uses a preemptive schedul-ing algorithm, it can be validated independently if itconsists solely of periodic tasks. Non-real-time applica-tions are scheduled in a time-sharing fashion.Following this introduction, Section 2 describes thesystem model we use in this paper and states our as-sumptions. It also describes the constant utilizationserver, which is the type of the dedicated servers weuse to execute all applications. Section 3 presents asu�cient schedulability condition of the EDF algorithmwhen used to schedule independent, preemptable spo-radic tasks in general and constant utilization servers inparticular. Sections 4 presents a su�cient schedulabilitycondition of real-time applications in the open system.Section 5 gives the algorithms which the operating sys-tem uses to maintain the servers for di�erent types ofapplications so that the schedulability of each real-time1



Ready Queue

Scheduler

RM-PCP

A A2 N

Applications

Non-Real-Time

Time Sharing

Scheduler SchedulerScheduler

S0 S S S1 2 N

Real-Time

Application

Real-Time

Application

OS Scheduler

(EDF)

A 1

Real-Time

Application

Scheduler

Cyclic ExecutiveEDF-SBP

Operating SystemFigure 1: Open System Modelapplication can be determined in isolation from otherapplications in the system. Section 6 discusses relatedwork, and Section 7 is a summary.2 Background and AssumptionAccording to the model adopted in this paper, anopen system has a processor with speed equal to one.The workload on the processor consists of real-time ap-plications, denoted by Ak; k = 1; 2; and so on, and non-real-time applications. We assume that every real-timeapplication Ak would be schedulable if it were executedalone on a slow processor with speed �k < 1. In the opensystem, each real-time application Ak is executed by theconstant utilization server Sk, for k � 1, and all thenon-real-time applications are executed by the constantutilization server S0. As shown in Figure 1, each serverhas a ready queue containing application jobs that areready to be executed by the server.2.1 Constant Utilization ServerA constant utilization server is de�ned by its serversize U , which is the fractional processor utilization allo-cated to the server. We assume that the execution timeof every job in every real-time application is known af-ter the job is released, and let the execution time of thejob Ji in the ready queue of a server for a real-time ap-plication be ei. The execution times of jobs in non-real-time applications are unknown. These jobs are scheduledamong themselves on a round-robin basis, one time sliceat a time. Hence, the execution time of the job at thehead of the ready queue of the server S0 is equal to thelength of the time slice.Each constant utilization server becomes eligible forexecution when the operating system gives it some (> 0)

execution budget. The budget is consumed (i.e., de-creased by one unit per unit of time) whenever the serverexecutes. The server is no longer eligible for executionwhen its budget is exhausted (i.e., the budget becomeszero). It becomes eligible for execution again when theoperating system replenishes its budget (i.e., sets itsbudget to some positive value again).Speci�cally, the operating system replenishes theserver budget and sets the server deadline of a constantutilization server of size U according to the followingrules. In the statement of these rules, b is either equalto the execution time ei of the job Ji at the head of theready queue of the server if the scheduling algorithm ofthe application is nonpreemptive, or is equal to a valueno greater than ei if the scheduling algorithm of the ap-plication is preemptive. We will return in Sections 4 and5 to discuss how to choose this value in the latter case.1. Initially, the budget of the server is zero, and thedeadline d is also zero.2. When a job Ji with execution time ei arrives (i.e., isreleased and placed in the ready queue of the server)at time ri while the ready queue is empty,(a) if d � ri, set the server budget to b and dead-line d to ri + b=U ;(b) otherwise do nothing.3. At the deadline d of the server,(a) if a job Ji with execution time ei is waiting atthe head of the ready queue, set the budget tob and move the deadline to d+ b=U ;(b) otherwise do nothing.The server behaves like a task with a constant utiliza-tion U if its ready queue is never empty, thus the nameConstant Utilization Server. This server algorithm isessentially the same as the total bandwidth server al-gorithm proposed by Spuri and Buttazzo [7]. (We willdiscuss their di�erence in Section 6.)2.2 Scheduling HierarchyThe applications are scheduled and executed accord-ing to a two-level hierarchical scheme. Again, at thetop level, the scheduler provided by the operating sys-tem maintains all the servers. It replenishes the serverbudget and sets the server deadline for every server inthe system, and schedules all the servers in the systemaccording to the earliest-deadline-�rst (EDF) algorithm.(Hereafter, we refer to this scheduler as the OS sched-uler.)When the system starts, the operating system cre-ates the server S0 for non-real-time applications. TheOS scheduler always admits non-real-time applications,2



but it admits a real-time application into the systemonly when the application meets the condition describedin Section 5. When the OS scheduler admits a newreal-time application Ak, the operating system createsa server Sk with server size Uk to execute Ak. (Section4 will discuss the server size Uk required to ensure theschedulability of the application.) When the applicationAk terminates, the operating system destroys the serverSk. We assume that the total server size of all constantutilization servers in the system is less than or equal toone at all times.At any time, the system consists of a number ofservers, as shown in Figure 1. Each server Sk has aready queue that contains ready-to-run jobs to be ex-ecuted by the server. When the OS scheduler selectsa server to execute, the server executes the job at thehead of its ready queue. The server Sk for each real-time application Ak in the system also has a low-level,server scheduler, which schedules ready-to-run jobs inAk and places them in priority order in the ready queueof Sk. The server scheduler is a part of the application.In contrast, the operating system schedules all the non-real-time applications. The net e�ect is that all the non-real-time applications appear to be running in a slowertime-sharing environment.More speci�cally, when a job of a real-time applica-tion Ak is released, the operating system invokes theserver scheduler of the server Sk. The server schedulerthen inserts the newly released job in the proper locationin the server's ready queue according to the schedulingalgorithm used by the server scheduler. We assume thatthe algorithm used by every server scheduler is a simplepriority-driven algorithm. The time taken for insertingthe newly released job into the ready queue is either neg-ligibly small compared with the execution times of all thejobs in the system or is accounted for by including theserver scheduler as a task of Ak when determining theschedulability of Ak.3 Schedulability Condition of SporadicJobs With EDF AlgorithmWe say that a constant utilization server is schedulableif every time after the server budget and deadline are set,its budget is always exhausted at or before its deadline.To state this fact in another way, we can view each serveras a sporadic task in which a job with execution timeequal to the server budget and deadline equal to theserver deadline is released each time the server budgetis replenished. The server is schedulable when every jobof it completes by its deadline.We present here a general schedulability conditionthat implies the schedulability condition of constant uti-lization servers. The general condition is for a stream ofindependent, preemptable sporadic jobs. Each sporadic

job Ji is characterized by its release time ri, executiontime ei and deadline di. The ratio ei=(di � ri) is thedensity of the job Ji, and the interval (ri; di] is its activeinterval. We say that Ji is an active job in the systemat any time instant t 2 (ri; di], but is not an active joboutside this interval. Theorem 1 below gives a su�cientschedulability condition for sporadic jobs when they arescheduled on the EDF basis.Theorem 1: A system of independent, preemptablesporadic jobs is schedulable according to the EDF al-gorithm if at any time instant, the total density of allactive jobs in the system is less than or equal to one.Proof: We prove the theorem by contradiction. Todo so, we suppose that a job misses its deadline at timet, and there is no missed deadline prior to t. Let t0 be thelatest time before t at which either the system idles orsome job with a deadline after t executes. Suppose thatduring the interval (t0; t], the system executes n sporadicjobs, J1; J2; � � � ; Jn, ordered in increasing order of theirdeadlines. Job Jn is the one that misses its deadline.We call either the release of a job, or the completion ofa job, or a job missing its deadline a system event. Sup-pose that during the interval (t0; t], there are m systemevents, ordered in ascending order of their occurrences.Let ti denote the time instant when event i occurs, wherei = 1; 2; � � � ;m. We must have t1 = t0 and tm = t. Theentire interval (t0; t] is partitioned into m � 1 disjointsub-intervals, (t1; t2]; (t2; t3]; � � � ; (tm�1; tm]. By the def-inition of system events, in each sub-interval, active jobsin the system remain unchanged, and so does the totaldensity of all the active jobs. Let �i denote the subsetcontaining all the jobs that are active during the sub-interval (ti; ti+1] for 1 � i � m � 1 and ui denote thetotal density of the jobs in �i.We note thatnXi=1 ei = nXi=1 eidi � ri (di � ri)= m�1Xj=1 (tj+1 � tj) XJk2�j ekdk � rk= m�1Xj=1 uj(tj+1 � tj)Since uj � 1 for all j = 1; 2; � � � ;m� 1, we havenXi=1 ei � m�1Xj=1 (tj+1 � tj) = tm � t1 = t� t0However job Jn misses its deadline at time t, therefore,nXi=1 ei > t � t03



which is clearly a contradiction. 2The following Corollary follows straightforwardlyfrom Theorem 1. Our open system consists of only con-stant utilization servers. Because the total server size isless than or equal to one, all servers are schedulable.Corollary 2: In a system of a varying number of in-dependent, preemptable periodic tasks whose deadlinesare equal to their respective periods and a varying num-ber of constant utilization servers, if the total utilizationUp of all the periodic tasks and the total server size Usof all the servers are such that Up + Us � 1 at all times,then all periodic tasks and all servers are schedulableaccording to the EDF algorithm.4 Schedulability Condition of Real-TimeApplicationsWe are now ready to discuss the schedulability condi-tion under which a real-time application Ak is schedula-ble when it is running in an open system. As stated ear-lier, we assume that Ak would be schedulable accordingto some scheduling algorithm if it were executed alone ona slow processor with speed �k < 1. We want to answerhere the question under what condition the applicationAk is schedulable in the open system if its server Sk,working according to the constant utilization server al-gorithm, is schedulable.To gain some insight, we �rst examine the followingexample. Suppose that the application Ak uses the EDFalgorithm to schedule its jobs, and Ak has two jobs,J1(0; a; 10a+4) and J2(a; 1; a+4), where a > 0. (Threenumbers in parenthesis represent release time, executiontime and deadline of the job, respectively.) The appli-cation Ak is schedulable if it executes alone on a slowprocessor with speed �k equal to 0.25, as shown in Fig-ure 2(a). Now suppose that the application Ak is exe-cuted by the server Sk with server size Uk in the opensystem. Figure 2(b) shows a possible schedule of Ak.At time 0, job J1 is released, the OS scheduler sets thebudget of server Sk to a and deadline to a=Uk. Sk mayhave the earliest deadline among all servers in the sys-tem during interval (0; a), and it starts to execute J1immediately. At time a, the budget of server Sk is ex-hausted, and job J1 completes. At the same time, job J2arrives. But since the deadline of server Sk is a=Uk, theserver budget is replenished at that time. Therefore, jobJ2 stays in the ready queue of Sk waiting for the serverbudget to be replenished. At time a=Uk, the operatingsystem sets the budget of server Sk to 1 and deadline to(a+ 1)=Uk. J2 is guaranteed to complete at (a+ 1)=Uk.To meet J2's deadline, we must have (a+1)=Uk � a+4,or Uk � (a+ 1)=(a+ 4). Since a is an arbitrary positivenumber, J2 is guaranteed to meet its deadline only whenUk = 1. This means that no other application can bescheduled on the fast processor!

-?J1 0r1 a a + 4 4a + 4 -? ?J2 ar2 a + 4d2(a). Slow Processor with Speed 0.25 -?J1 0r1 a -? ?J2 ar2 a + 4d2 a=Uk (a + 1)=Uk -@@@@@@@@@@ @@Budgeta 10 a a=Uk (a + 1)=Uk(b). Fast Processor (with improper amount of budget replenishment) -?J1 0r1 a a + 4 4a + 4 -? ?J2 ar2 a + 4d2
-@@@ @@@@@@@ @@@Budget a=4 1 3a=40 a a + 4(c). Fast Processor (with proper amount of budget replenishment)Figure 2: Schedules of Application AkThis example illustrates that budget of the server Skcannot always be set to the execution time of the jobat the head of Sk's ready queue. Otherwise, we cannotguarantee that the application Ak is schedulable in theopen system even when Ak is schedulable on a slowerprocessor and the server Sk is schedulable, except whenthe size Uk of server Sk is one. The following theoremstates that, when the operating system replenishes theserver budget in a proper manner, we can guarantee theschedulability of the application Ak in the open systemif the server Sk for Ak has size �k < 1 and is schedulable.Theorem 3: If a real-time application Ak would beschedulable according to some scheduling algorithm ifit were executed alone on a slow processor with speed�k < 1, it is also schedulable on a fast processor withspeed one when it is executed by a constant utilizationserver Sk in the two-level scheduling hierarchy describedin Section 2, provided that all the following conditionsare true.1. The server Sk has server size �k and is schedulablein the open system.2. When the operating system sets the budget of theserver Sk, the replenished budget never exceeds the4



remaining execution time of the job at the head ofSk's ready queue.3. During any interval (t; d) between the time instantt when the operating system replenishes the budgetof the server Sk and the corresponding deadline d ofthe server, there would be no context switch amongthe jobs in the application Ak if Ak were executedalone on the slow processor with speed �k.The proof of this theorem follows directly from thefollowing lemma. Let tm denote the time when the op-erating system replenishes the budget of the server Skfor the m-th time and sets its deadline to dm for m � 1.We say that a job attains x units of time in an interval,or its attained time in the interval is x, if its remainingexecution time is x units less at the end of the intervalthan that at the beginning of the interval.Lemma 4: When the conditions stated in Theorem3 are true, the same job in Ak executes and attains thesame time (dm�tm)�k on both the slow and the fast pro-cessors during any interval (tm; dm), for all m � 1, andno other jobs in Ak execute on either processor duringthat interval.Proof: We prove the lemma by induction on the in-dex m. On the fast processor, the operating system setsthe budget of the server Sk when the �rst job J1 of Akarrives at t1. The deadline of the server Ak is set to d1.According to the three conditions stated in Theorem 3,we have e1 � (d1� t1)�k, and there is no context switchamong jobs in Ak during the interval (t1; d1). Since Skis schedulable, during the interval (t1; d1), the server Skexecutes J1 and J1 attains (d1 � t1)�k units of time onthe fast processor. Similarly, if Ak executes alone on theslow processor, J1 also attains this amount of time inthis interval. Moreover, no other jobs in Ak execute oneither processor during (t1; d1).Now suppose that during each interval (tm; dm) form = 1; 2; � � � ; j, the the same job in Ak executes and at-tains (dm � tm)�k units of time on both processors, andno other jobs in Ak execute on either processor duringthe interval. At time dj, every ready job Ji in Ak eitherhas completed on both processors, or if not completed,has attained the same time on both processors. There-fore, on both processors at time dj, either the same jobin Ak has the highest priority or no job in Ak is ready.Let Jx denote the highest priority ready job in Ak attime dj or the �rst job in Ak released after dj if there isno ready job in Ak at dj. Let t0 denote the earliest timeJx is ready for execution at or after dj.The slow processor starts executing Jx at t0. On thefast processor, the OS scheduler sets the budget anddeadline of the server Sk at time tj+1 = t0. The deadlineis set to dj+1. Again according to the three conditionsstated in Theorem 3, we have e0x � (dj+1 � tj+1)�k,

where e0x is the remaining execution time of Jx, and thereis no context switch among jobs in Ak during the interval(tj+1; dj+1). Therefore, during the interval (tj+1; dj+1),job Jx executes on the slow processor continuously andattains (dj+1 � tj+1)�k units of time, and on the fastprocessor, the server Sk executes Jx and allows it toattain the same amount of time. No other jobs in Akexecute on either processor during interval (tj+1; dj+1).2 Lemma 4 in essence says that when the conditionsstated in Theorem 3 are true, the constant utilizationserver Sk with size �k executing on the fast processoremulates a slower processor with speed �k. To see whyTheorem 3 follows directly, we note that during eachinterval (tm; dm) for m � 1, only one job in Ak exe-cutes on the slow processor and the attained time ofthe job is (dm � tm)�k units. Hence, the slow proces-sor never idles during any interval (tm; dm), and ev-ery job in Ak can complete only at the end of suchan interval. According to Lemma 4, if Ji executesduring the intervals (tm1 ; dm1); (tm2 ; dm2); � � � ; (tml ; dml)and completes at time dml on the slow processor, italso executes on the fast processor during the intervals(tm1 ; dm1); (tm2 ; dm2); � � � ; (tml ; dml) and completes at orbefore time dml on the fast processor. Therefore, if alljobs in application Ak meet their deadlines on the slowprocessor, they also meet their deadlines when executedby server Sk on the fast processor.We now return to the example given earlier in thissection. If Ak were executed on a slow processor withspeed 0.25, J2 would preempt J1 at time a. Condition3 in Theorem 3 does not hold. Indeed the applicationAk is not schedulable if the server budget is replenishedand its deadline set as described. However, suppose thatwe let the OS scheduler set the server budget accordingto the three conditions stated in Theorem 3. At time 0,when job J1 is released, the operating system sets thebudget of server Sk to a=4 and deadline to a. At time a,when job J2 is released and becomes the job at the headof Sk's ready queue, the server deadline just expires.The OS scheduler immediately sets the budget of Sk to1 and deadline to a + 4. Job J2 completes at or beforethe server deadline at a+ 4, thus meets its deadline. Attime a+4, J1 becomes the job at the head of Sk's readyqueue with remaining execution time 3a=4. The serverbudget is set to 3a=4 and deadline is set to 4a+4. At orbefore time 4a+ 4, job J1 completes. Figure 2(c) showsa possible schedule of the application.5 Scheduling Algorithm for Real-TimeApplications in Open SystemWe now describe in detail the two-level scheduling al-gorithm which we brie
y described in Section 2. Figure3 shows the operations of the OS scheduler. Speci�cally,5



let Ut denote the total size of all the servers in the systemwhen an application Ak is created and requests for ad-mittance into the system. Again, Ak is schedulable on aslow processor with speed �k. The operating system ad-mits the application into the system and creates a serverSk with size �k to execute the application if Ut+�k � 1.Otherwise it rejects the application. If it accepts the ap-plication, it schedules the server Sk for the applicationtogether with existing servers on the EDF basis.The ways the OS scheduler maintains the server Skand its interaction with the server scheduler depend onwhether the server scheduling algorithm is preemptiveor nonpreemptive and whether the jobs in the applica-tion contend for resources amongst themselves. (We as-sume here that applications do not contend for globalresources, that is, the resources shared among jobs ofdi�erent applications.) The OS scheduler replenishesthe budget and sets the deadline of each server for eachapplication so that the conditions in Theorem 3 are sat-is�ed. It always sets the server budget to the maximumvalue that satis�es conditions 2 and 3 stated in Theorem3 in order to reduce the number of times the budget anddeadline of the server Sk are set, thus minimizing theoverall scheduling overhead. In other words, when theOS scheduler sets the budget of the server Sk at time t,the budget is set to minfe0i; (t0 � t)�kg, where e0i is theremaining execution time of the job Ji at the head ofSk's ready queue and t0 is the earliest possible time thata context switch could happen among jobs in applicationAk if Ak were executed alone on the slow processor withspeed �k.5.1 Real-Time Applications with Nonpre-emptive SchedulerFigure 4 shows the actions taken by the OS schedulerto maintain the server Sk for a nonpreemptive applica-tion Ak. The application has a stream of independentsporadic jobs Ji; i = 1; 2; � � �, each of which is character-ized by its release time ri, execution time ei, and dead-line di. The release time of any job need not to be knowna priori, but we assume that the execution time of everyjob in Ak becomes known after it is released. The appli-cation's scheduler schedules the jobs in Ak according tosome nonpreemptive scheduling algorithm in such a waythat Ak is schedulable by itself on a slow processor withspeed �k < 1. Whenever the server Sk is scheduled, itexecutes the job at the head of its ready queue. The cor-rectness of this two-level algorithm is given by Theorem5. Theorem 5: If a real-time application Ak consistingof independent sporadic jobs is schedulable on a slowprocessor with speed �k < 1 by itself according to somenonpreemptive scheduling algorithm, it is also schedula-ble on the fast processor with speed one according to thetwo-level scheduling algorithm where the OS scheduler

Initiation:� Create a constant utilization server S0 with size U0 fornon-real-time applications.� Set the budget and deadline of server S0 to in�nity.� Set the total server size Ut of all servers in the systemto U0.Acceptance Test and Admission of Ak:When each new application Ak requests for admittance,providing the speed �k of the slow processor on which Akis schedulable in its admission request, if Ut + �k > 1,reject Ak, otherwise, admit Ak, and� create a constant utilization server Sk with size �kfor Ak,� set server budget and server deadline d to zero, and� increase Ut by �k.Maintenance of each server Sk:Maintain each server Sk in ways described in Figures 4,5, or 6 depending on the type of application executed bySk.Interaction with server scheduler of each server Sk :� When every job Ji in the application Ak is released, in-voke the server scheduler of Sk to place Ji in the properlocation in Sk's ready queue.� If the application Ak uses a preemptive scheduling algo-rithm, before replenishing the budget of Sk, invoke theserver scheduler of Sk to update the occurrence time tkof the next application event of Ak.Scheduling of all servers:Schedule all servers on the EDF basis.Figure 3: Operations of the OS schedulerworks as described in Figures 3 and 4, provided that thetotal server size of other existing servers is no more than1� �k.Proof: According Corollary 2, all the servers, includ-ing Sk, are schedulable. It is easy to see that all threeconditions stated in Theorem 3 are true. Hence Theorem5 is true. 25.2 Real-Time Applications with Preemp-tive SchedulerWe now consider a real-time application Ak that isschedulable by itself on a slow processor with speed�k < 1 by some preemptive scheduling algorithm (e.g.,EDF, RM or DM). In this case, we require that the jobs6



Maintenance of server Sk :1. When a new job Ji of Ak arrives at t,(a) invoke the server scheduler of Sk to place Ji in theproper location in Sk 's ready queue, and(b) if the current server deadline d � t, set the serverbudget to ei and server deadline d to t+ ei=�k.2. At the deadline d of the server Sk, if its ready queueis not empty and job Ji is at the head of the readyqueue, set the server budget to ei and server deadline dto d+ ei=�k.3. When the application Ak terminates,(a) delete Sk from the system, and(b) decrease Ut by �k.Figure 4: Maintenance of Server Sk for a NonpreemptiveApplication Akin each task Ti in the application be released periodi-cally. Speci�cally, each task Ti in Ak is characterized byits phase ri and period pi, meaning that the j-th job oftask Ti has release time ri + (j � 1)pi, and this releasetime is known a priori. However, unlike the usual peri-odic tasks, the jobs in each task Ti may have di�erentexecution times and relative deadlines. We assume thatthe execution time em of every job Jm becomes knownafter Jm is released.Figure 5 shows the actions taken by the OS schedulerto maintain the server Sk for such an application. Theterm application event in the description refers to eitherthe release or the completion of a job in Ak. At any timet, the next application event is the application event thatwould have the earliest possible occurrence time after tif the application Ak were executed alone on the slowprocessor. Let t0 denote the earliest release time of anyjob of the application Ak after t. Then at time t, thenext application event occurs either at t0, if the readyqueue of server Sk is empty at t, or at minft0; t+e0i=�kg,if the job Ji at the head of the ready queue has remainingexecution time e0i.As shown in Figure 5, the maintenance of a server fora preemptive application is more complicated than thatof a server for a nonpreemptive application. The addedcomplication arises from the need for the server sched-uler of each server Sk to compute the occurrence timetk of the next application event in the application Akexecuted by Sk. This computation can be done in O(N )time when Ak contains N tasks. The OS scheduler setsthe budget and deadline of the server Sk based on the

Maintenance of server Sk :1. When a new job Ji of Ak arrives at t, invoke the serverscheduler of Sk to place Ji in the proper location in Sk'sready queue, and set Ji's remaining execution time e0ito ei. If the current server deadline d � t,(a) invoke the server scheduler of Sk to update theoccurrence time tk of the next application event ofAk,(b) set the server budget to (tk�t)�k and server dead-line d to tk, and(c) decrease the remaining execution time e0i of Ji by(tk � t)�k.2. At the deadline d of the server Sk , if its ready queue isnot empty and job Ji is at the head of the ready queue,(a) invoke the server scheduler of Sk to update theoccurrence time tk of the next application event ofAk,(b) set the server budget to (tk�d)�k and server dead-line d to tk, and(c) decrease the remaining execution time e0i of Ji by(tk � d)�k.3. When the application Ak terminates,(a) delete Sk from the system, and(b) decrease Ut by �k.Figure 5: Maintenance of Server Sk for a PreemptiveApplication Akoccurrence time tk of the next application event. For thisreason, this scheme works only when the release times ofjobs are known. The correctness of this two-level algo-rithm for preemptive applications is given by Theorem6, which follows straightforwardly from Corollary 2 andTheorem 3.Theorem 6: If a real-time application Ak consistingsolely of independent tasks whose jobs are released pe-riodically is schedulable on a slow processor with speed�k < 1 by itself according to some preemptive schedul-ing algorithm, it is also schedulable on the fast processorwith speed one according to the two-level scheduling al-gorithm where the OS scheduler works as described inFigures 3 and 5, provided that the total server size ofother existing servers is no more than 1� �k.5.3 Resource ConsiderationOftentimes, tasks in a real-time application share log-ical or physical resources. In this section, we consider a7



preemptive application Ak of tasks that share local re-sources. These resources are not used by tasks in appli-cations other than Ak. Again we require that the jobsin each task be released periodically, so that we knowtheir release times. Further, we assume that after a jobin Ak is released, we know what resources it will use,when it will request for the resources, and how long itwill hold the resources. Suppose that the application Akis schedulable by some preemptive scheduling algorithm(e.g., RM, DM or EDF) and resource access protocol(e.g., PCP or SBP) when it executes alone on a slowprocessor with speed �k < 1. The question we want toanswer here is how should the server for such an applica-tion Ak be maintained by the OS scheduler so that theapplication is schedulable in the open system.To take resource contention into consideration, theOS scheduler must react to two types of applicationevents in addition to job releases and completions. Theseadditional application events are requests for resourceand releases of resource by jobs in Ak. Accordingly, thecalculation of the occurrence time of the next applica-tion event after any time t is changed as follows. Let t0denote the earliest release time of any job of the appli-cation Ak after t, and Ji be the job at the head of theready queue of the server Sk at time t. Let e00i denotethe amount of time Ji must attain to reach the pointwhen Ji either completes, or requests for a resource orreleases a resource, whichever occurs the earliest. (Thiscan be computed when the remaining execution time e0iof the job Ji is known.) At time t, the occurrence of thenext application event is either t0 if the ready queue isempty, or minft0; t + e00i =�kg if Ji is at the head of theready queue.Figure 6 shows the actions taken by the OS schedulerto maintain the server Sk for a preemptive applicationAk with local resource contention. As shown in the �g-ure, the operations of the OS scheduler are further com-plicated by the need for handling resource requests byjobs in the application Ak. Speci�cally, when a job Jiin the application Ak requests for a resource or releasesa resource, the server scheduler may need to change thepriorities of some jobs in Ak and sort the jobs in its readyqueue according to the resource access protocol used byAk. For example, if Ak uses PCP algorithm, when thehighest priority job Ji requests for a resource which isheld by job Jj , the server scheduler changes the priorityof Jj to the priority of Ji and move Jj to the head ofits ready queue. We note that the budget of the serverSk is exhausted every time a job in Ak requests for aresource or releases a resource. At the deadline of theserver Sk, the OS scheduler invokes the server schedulerto update the occurrence time tk of the next applicationevent of Ak, and sets the budget and deadline of Sk ac-cordingly. Again all conditions stated in Theorem 3 are

Maintenance of server Sk :1. When a new job Ji of Ak arrives at t, invoke the serverscheduler of Sk to place Ji in the proper location in Sk'sready queue, and set Ji's remaining execution time e0ito ei. If the current server deadline d � t,(a) invoke the server scheduler of Sk to update theoccurrence time tk of the next application event ofAk,(b) set the server budget to (tk�t)�k and server dead-line d to tk, and(c) decrease the remaining execution time e0i of Ji by(tk � t)�k.2. At the deadline d of the server Sk , if its ready queue isnot empty and job Ji is at the head of the ready queue,(a) invoke the server scheduler of Sk to update theoccurrence time tk of the next application event ofAk,(b) set the server budget to (tk�d)�k and server dead-line d to tk, and(c) decrease the remaining execution time e0i of Ji by(tk � d)�k.3. After a job Ji requests for a resource or releases a re-source, invoke the server scheduler to change the priori-ties of some jobs if necessary and move the job with thehighest priority to the head of its ready queue.4. When the application Ak terminates,(a) delete Sk from the system, and(b) decrease Ut by �k.Figure 6: Maintenance of Server Sk for a PreemptiveApplication Ak With Resource Contentionmet. Hence, the following theorem stating the correct-ness of this two-level algorithm is true.Theorem 7: If a real-time application Ak consistingsolely of independent tasks that share local resources andwhose jobs are released periodically is schedulable on aslow processor with speed �k < 1 by itself according tosome preemptive scheduling algorithm, it is also schedu-lable on the fast processor with speed one according tothe two-level scheduling algorithm where the OS sched-uler works as described in Figures 3 and 6, provided thatthe total server size of other existing servers is no morethan 1� �k.8



6 Related WorkAs mentioned in Section 2, the constant utilizationserver algorithm is essentially the same as the total band-width server algorithm proposed by Spuri and Buttazzo[7]. The only di�erence between these two server algo-rithms is that according to the total bandwidth serveralgorithm, when a job at the head of the server's readyqueue completes, the server budget is replenished imme-diately if the ready queue is not empty, while accordingto the constant utilization server algorithm, this is notdone until the current server deadline. We use the con-stant utilization servers to execute the applications withhard deadlines in the open system. There is no bene�tin completing jobs in these applications early, as long asthey meet their deadlines.The constant utilization server algorithm is also sim-ilar to the preemptive fair queueing and virtual clock al-gorithms proposed for network tra�c scheduling [8, 9].A processor with speed C can be thought of as a com-munication link with link capacity C, and a constantutilization server Sk with server size Uk can be thoughtof as a connection with reserved bandwidth UkC. Thetwo-level hierarchical scheduling algorithm proposed inthis paper can be used to schedule multiple real-timemessage streams on each of the connections sharing thesame output link of a network switch.7 SummaryThis paper presented a solution to the problem ofscheduling real-time applications and non-real-time ap-plications in an open system. The solution is in the formof a two-level hierarchical algorithm. We have shownthat the two-level scheme emulates the in�nitesimally�ne-grain, weighted round-robin algorithm. In essence,when operating system admits a real-time applicationwhich requires a fraction � of the processor bandwidthto meet all of the timing constraints, it provides the ap-plication with a virtual slow processor with speed � andprotects the application from interference from other ap-plications.The scheduling algorithms at both levels in our two-level scheme are priority-driven. The context switchoverhead of the system is equal to that incurred in adynamic priority system, which is much smaller thanthat of the �ne-grain round robin scheme.To simplify our description, Figure 3 says that thebudget and deadline of server S0 for non-real-time appli-cations are set to in�nity. In essence, the non-real-timeapplications are scheduled in the background in the opensystem described here. We can improve the responsive-ness of non-real-time applications by making S0 a totalbandwidth server. In that case, we would replenish itsbudget periodically every time slice or a few slices.We have assumed that the OS scheduler can preempt

the servers at any time. In general, the preemption ofa server may be delayed because it is in a nonpreempt-able section (e.g., when the application served by it ismaking a system call). We can account for the e�ect ofnonpreemptivity and resource contention among appli-cations on the schedulability of the applications in thewell-known ways [4, 5].References[1] C. L. Liu and J. W. Layland, \Scheduling Al-gorithms for Multiprogramming in a Hard RealTime Environment," in J. Assoc. Comput. Mach.,vol. 20(1), pp. 46{61, 1973.[2] J. Lehoczky, L. Sha, and Y. Ding, \The Rate Mono-tonic Scheduling Algorithm { Exact Characteriza-tion and Average Case Behavior," in Proceedings ofthe IEEE Real-Time System Symposium, pp. 166{171, 1989.[3] B. Sprunt, L. Sha, and J. P. Lehoczky, \Aperi-odic Task Scheduling for Hard Real-Time Systems,"Real-Time Systems: The International Journal ofTime-Critical Computing Systems, vol. 1, pp. 27{60, 1989.[4] L. Sha, R. Rajkumar, and J. P. Lehoczky, \PriorityInheritance Protocols: An Approach to Real-TimeSynchronization," IEEE Transactions on Comput-ers, 39(9):1175{1185, September 1990.[5] T. P. Baker, \A Stack-Based Allocation Policyfor Realtime Processes," Proceedings of IEEE 11thReal-Time Systems Symposium, pp. 191{200, De-cember 1990.[6] T. M. Ghazalie and T. P. Baker, \Aperiodic Serversin a Deadline Scheduling Environment," Real-TimeSystems, Vol. 9, No. 1, July 1995.[7] M. Spuri and G. Buttazzo, \Scheduling AperiodicTasks in Dynamic Priority Systems," Real-TimeSystems, vol. 10, pp. 179{210, 1996.[8] L. Zhang, \VirtualClock: A New Tra�c ControlAlgorithm for Packet-Switched Networks," ACMTransaction on Computer Systems, Vol. 9, No. 2,pp. 101{124, May 1991.[9] A. Demers, S. Keshav, and S. Shenker, \Analy-sis and Simulation of a Fair Queueing Algorithm,"Proc. ACM SIGCOMM'89, pp. 3{12.9


