
HAIL: A Language for Easy and Correct Device Access
Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam

DoCoMo Communication Laboratories USA, Inc.
San Jose, CA 95110

+1-408-573-1050

{ jsun, yuan, kallahalla, nayeem}@docomolabs-usa.com

ABSTRACT
It is difficult to write device drivers. One factor is that writing
low-level code for accessing devices and manipulating their
registers is tedious and error-prone. For many system-on-chip
based systems, buggy hardware, imprecise documentation, and
code reuse worsen the situation further. This paper presents HAIL
(Hardware Access Interface Language), a language-based
approach to simplify device access programming and generate
error checking code against bugs in software, hardware, and
documentation. HAIL is a domain-specific language that specifies
all aspects of a device’s programming interface and the access
methods in a particular system and OS. A compiler automatically
checks the specification and translates it into C code for device
access, with optional debugging code. The generated code can be
included directly into device driver code. In the paper, we argue
that HAIL lowers development effort, incurs minimal runtime
overhead, and reduces device access related bugs. We also show
that the HAIL specification can be reused for different operating
systems, thereby reducing porting costs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification.
D.3.2 [Programming Languages]: Language Classifications –
domain-specific languages. D.4.4 [Operating Systems]:
Communications Management – device access in drivers.

General Terms
Design, Languages, Verification.

Keywords
Device drivers, domain-specific languages, automatic code
generation, register access, embedded systems, system-on-chip,
invariant specification and verification, software reuse.

1. Introduction
Device drivers are notoriously difficult to write and often cause
operating system failures [1]. Many factors contribute to this,

including interrupt handling, buffer management,
synchronization, and timing constraints. In particular, simply
accessing the device and manipulating its registers involves a
significant amount of work and is an inviting ground for bugs.

Today programmers typically scan through device
documentations and define a long list of macros for various parts
of the device interface such as register names and offsets, bit field
masks, and enumeration of valid values. Hard-coded offsets and
bit-manipulations based on these macros are used to access the
device. This programming style is cumbersome and error prone.
Defining macros and performing register bit manipulation
represent a significant amount of development effort. For
example, in the Linux 2.6.9 kernel, the e1000 driver for Intel
eepro1000 devotes 14% of lines of code to macro definitions and
8% to bit manipulations. In general, for low-level device driver
code we typically see anywhere from 15% to 25% of code
devoted to macro definitions and bit manipulations.

Bit manipulations are inherently error-prone due to the mismatch
between the logic operation unit and the software manipulation
unit. Bit fields within a register represent the logic operation units
of the device. The software manipulation unit is, however, the
whole register because there is no way to address individual bits.
This disparity adds unwelcome complexities during the flow of
programming. For example, to manipulate bit fields in a register,
one generally uses operations such as masking, shifting, and
OR’ing, which do not directly reflect the underlying logic of the
program.

In many embedded systems, where new chips and system-on-chip
style are widely used, the situation becomes worse for two
reasons:

• First, the hardware and documentation of new chips often
have bugs. Prudent programmers frequently use assert
statements to verify the hardware state, the document
specification, and their understanding of the document.
However, there is no a systematic approach to do this.
Programmers often subconsciously trade off between the
benefit and the overhead of writing additional checks.

• Second, with system-on-chips widely used and reused in
embedded systems, the same IP core can be used on many
chips and many more systems; a device can have a different
base address in one bus or even live on a totally different
bus. For example the SMC91C111 chip [2] is used by at least
nine different SoC development boards. As a result of such
reuse and subtle differences in reuse, the programming effort
often multiplies; #ifdef statements are used which leads to
unmaintainable code.

To address the second problem, programmers typically abstract
the access code and adapt it to individual systems. Such an
abstraction for device access, however, is driver-specific and
hence cannot be easily shared with another device on the same
bus. It is also difficult, even impossible sometimes, to abstract
device access for future versions of the same chip and for future
buses the device may attach to.

In this paper we present a domain-specific language, called HAIL
(Hardware Access Interface Language), that simplifies device
access and provides guards against access-related bugs in
software, hardware or documentation. HAIL allows programmers
to specify devices and their associated buses in a structured
descriptive language that mostly consist of attribute/value pairs. A
complete specification consists of four parts: register map,
invariants, address space, and device instantiation. The first two
parts describe device registers and constraints on their access, the
third part describes one or more buses the device is attached to,
and the last part describes an instance of the device by associating
it with the bus. The decomposition of the specification into four
parts improves the reuse of the specification. For example, the
same device can live in different address spaces while multiple
devices can share the same address space. The HAIL compiler
then checks for the consistency of the speciation and translates the
specification into C code for accessing registers and their bits.
The compiler also generates optional debugging code that checks
for any violation of device-access constraints at run-time.

HAIL contributes to advancing the domain-specific language
approach of synthesizing hardware access code, especially for
embedded systems. Specifically HAIL has three main unique
features.

• HAIL decomposes hardware access specification into four
orthogonal parts, not only making it possible for multiple
parties to supply the specification but also increasing the
reuse of the specification. The specification reuse is easier
and safer than code reuse.

• HAIL introduces invariant specification and generates run-
time debugging code for a wide variety of software bugs and
hardware bugs.

• HAIL’s syntax and semantics are strongly motivated by and
closely mirror typical hardware specification, which should
lower the effort of adoption and usage.

The rest of the paper is organized as follow. In next section, we
compare HAIL with related work. HAIL is presented and detailed
in Section 3, followed by a case study in Section 4. Section 5
presents some additional features of HAIL. Section 6 describes
the experimental evaluation. Finally, Section 7 concludes this
paper.

2. Related Work
A device driver has three logical programming interfaces:
hardware access, kernel service access, and driver service export
to applications or kernel. The driver code encodes two run-time
models: the device hardware run-time model and the OS driver
run-time model. A very ambitious approach towards easy and
correct driver programming is to synthesize the driver completely
from a specification, encompassing all the above programming
and run-time aspects. Wang et al. [3] proposed a formal

specification of device behavior so that a complete OS-aware
driver can be synthesized. Conway et al. [4] devised a high-level
domain-specific language for driver development. Both pieces of
work assume device access through memory-mapped IO at a
fixed or variable base address. In the preliminary results, many
aspects of programming interfaces and run-time models are
simplified in order to facilitate implementation.

Previous work on hardware/software co-design focuses on
generating functional-level device access routines for software
and VHDL specification for hardware [5]. This approach is
typically used for ASIC design, where the actual register-level
device access is trivialized. By contrast, HAIL focuses solely on
generating device access code at the register (or bit-field) level
and addresses the handling of much more complex bus structures.

In many regards HAIL is similar to Devil, which also translates
high-level device description into register-level device access
code [6, 7]. HAIL, however, differs from Devil in four ways.
First, Devil targets PC systems, while HAIL targets embedded
systems, which make wider use of system-on-chips and have
more varieties of buses. Second, a Devil specification is
programming oriented and uses C style description, while a HAIL
specification is hardware attribute description oriented. Third,
HAIL captures additional important attributes of registers such as
fixed values for read/write and read with side effect. Finally and
more importantly, HAIL introduces a formal invariant
specification that generates run-time debugging code to catch a
wide variety of software and hardware bugs.

Commercial tools exist to aid driver programming, especially for
device access. Examples are WinDriver and KernelDriver [8] and
DriverStudio [9]. These products usually target one particular OS
and one class of devices (such as PCI devices). While they
facilitate driver development for the intended applications, they
don’t apply for general driver programming.

HAIL uses invariant specification to express inherent constraints
in device access and device state. HAIL compiler automatically
generates run-time debugging code to ensure that invariants are
preserved at run-time. This approach is related to defensive
programming research such as formal method for assertion by
Rosenblum [10] and contract checking wrappers by Edwards et al.
[11].

HAIL is also remotely related to code verification in simulated
run-time environments [12, 13, 14]. In both cases the generated
run-time debugging code performs consistency check against a
run-time model or a valid state transition machine. The latter
work, however, typically use hand-crafted code, instead of
invariant specification, to perform more extensive static analysis
and check for more complex and more specific constraints.

3. Hail Specification
3.1 Overview
HAIL specification consists of four parts: (1) register map
description, which describes the various device registers and bit
fields, (2) address space description, which describes the
mechanisms for accessing a bus, (3) device instantiation, which
describes the actual instantiation of the device in the particular
system, and (4) invariant specification, which describes the
constraints on accessing the device.

The register map description and invariant specification in HAIL
specification are usually translated from device documentation
directly. The address space specification depends on the system
/CPU architecture and sometimes the OS. Device instantiation is
tied to the specific driver’s needs.

A HAIL compiler translates the specification into C code for
accessing registers. In a simplified view, the generated code is a
list of get_xxx()/set_xxx() for all registers and bit fields, put
together in a C header file. Optionally the generated code can
also have run-time debugging code that catches any violations of
the specified invariants.

The device driver includes the generated header file and uses the
get_xxx()/set_xxx() function to access the device registers,
without concerning about the underlying device base addresses,
bus attributes, data width, endianess and etc.. Additionally, the
device driver can manipulate bit fields directly using these
functions and hence avoid many explicit bit manipulations.

Figure 1 illustrates the HAIL approach. In the next subsections,
we describe each of the four parts of HAIL specification. In
Section 4, we present a case study of HAIL.

HAIL
compiler

access functions +
debugging code

device
driver

#include

HAIL specification

• register map description
• address space description
• device instantiation
• invariant specification

device and bus
documentation

Figure 1 - Overview of HAIL

3.2 Register map description
Registers are the software interface of a device. A register map is
composed of a set of logically coherent registers that reside on the
same bus. A device can have one or more register maps. For
example, a typical PCI device has three register maps, one each
for PCI configuration, PCI memory, and PCI IO space.

Each register consists of a set of bit fields. In register map
description both register and bit field have a list of attributes such
as name, size, and accessibility (read-only, write-only, or read-
write). A readable register or bit field can be static, volatile (i.e.,
two adjacent reads may return different values), volatile_se
(volatile with side effect for reading), fixed (always the same
return value), or dont_matter (as in reserved bits). A writable bit

field may require a default value to write when its neighboring
fields are modified. This attribution is called default_write, and it
can be fixed, dont_change (i.e., the value of this bit should be
preserved), or no_default.

In general, register map description can be easily translated from
the device documentation. For example, Figure 2 shows a
segment document for register LCR (line control register) in
universal asynchronous receiver/transmitter (UART) device [15],
and Figure 3 shows its corresponding description in HAIL.

…

Word Length Select
0b00 = 5-bit character
0b01 = 6-bit character
0b10 = 7-bit character
0b11 = 8-bit character

WLSR/W1:0

Divisor Latch Access
0 = access TX, RX, and IER
1 = access DLL and DLM

DLABR/W7

reserved31:8

DescriptionNameAccessBits

LCR Bit Definitions
Physical Address 0xBASE_000C

Figure 2 - Documentation for Register LCR [16]

.=0x000C { name=LCR; access=RW; size=4;
 [31:8]: reserved;
 [7] : name=DLAB;
 ...
 [1:0] : name=WLS;
 enum={WLEN5=0b00,WLEN6=0b01,
 WLEN7=0b10, WLEN8=0b11};
}

Figure 3 – HAIL Specification for Register LCR
Note that in Figure 3 we do not have all attributes for the register
and bit fields (such as read_value and default_write). HAIL
allows one to specify a set of default attributes. Any unspecified
attributes will implicitly take the default values.

The register map description is only related to the device itself
and is independent of the bus, system and OS. Therefore, we
envision that the device vendor writes the register map description
and distributes it along with the device documentation

3.3 Address space description
In a system a device is always attached to a bus, or address space,
which dictates how the CPU can access the device registers. The
CPU accesses an address space through certain instructions. A
CPU with a memory management unit (MMU) can access the
CPU virtual space through regular memory read and write
instructions. Some CPUs can also directly access additional
address spaces. For example, in the i386 architecture, the CPU
can access an IO space through special instructions such as inb
and outb; in the Sparc64 architecture, the CPU can directly access
256 different spaces.

If a device is attached to an address space that is not directly
accessible to the CPU, the address space must be mapped into one
that is. The most common method is to map a window in such an
address space to the CPU virtual space. Suppose a window
[x,x+s] is mapped at base address, b, and the register in the

space has an offset, y, where x<=y<x+s, then the CPU can read
and write the register through *(unsigned int *)(b+y-x).

In HAIL, the address space description is separated from the
device description (i.e., register maps of the device). As a result,
devices on the same bus can share the same address space
description. In fact the system vendor or the OS porting engineer
can provide the address space description for the whole system
before driver development starts.

Further, in HAIL address spaces and mappings between them are
specified separately. An address space has attributes such as
name, supported data width, and endian-ness that are independent
of the mapping. For address space mapping, we define a list of
attributes including name, base address, mapping window, and
endian swapping. Figure 4 illustrates the relationship among
devices, address space, and space mapping in a simple one-level
mapping scenario. In more general and complex cases, there can
be multiple levels of mapping in order for the CPU to access an
remote address space.

Address space
• data width
• endian
• …

Device

CPU virtual space
(CPU accessible)

Mapping
• base
• endian swap
• …

DeviceDevices

Figure 4 - Address space and space mapping

The separation of address space description and space mappings
not only makes specification simpler but also makes it more
flexible and expressive. For example, consider a MIPS system
running in big endian mode with a little endian PCI bus. If the
host-PCI controller does automatic endian swapping, the mapping
will have an endian swapping attribute. As a result HAIL will not
generate endian swapping code in register access functions. If the
host-PCI controller does not perform endian swapping, a one-line
change in the HAIL specification will yield the correct code with
proper endian swapping.

In addition to memory mapped address spaces, HAIL also
supports gated spaces. A typical such space is usually accessed
through a pair of address/data registers such as many
implementations of i2c bus. For gated space, HAIL resorts to a set
of externally defined read/write functions.

Sometimes it is useful to treat a memory mapped space as a gated
space. For example, PCI configuration space is typically mapped
into CPU virtual space. However, Linux already defines a set of
functions for accessing PCI configuration registers. This makes it
preferable to specify the PCI configuration space as a gated space
and supply the proper wrapper functions to call the underlying
Linux functions.

3.4 Device instantiation
Device instantiation defines an instance of a device by associating
every device’s register map to a specific address space. When
associating a register map with an address space, the instantiation
specifies a base address for the register map (which can be a
statically fixed address), a literal (which is defined as a macro or a

variable by the driver or OS environment), or a HAIL variable
(which needs to be set by driver at run-time).

Figure 5 shows the instantiation of the UART device (Figure 3) in
Arcom Viper board.

instantiate myuart as UART {
 multi_instance = no;
 serial_reg_map => cpu_virtual {

 base_address = static(0xF8100000);
};

}

Figure 5 – Device instantiation for UART

3.5 Invariant specification
Invariants are constraints that the device must satisfy at runtime.
In general, constraints fall into two categories: logical constraints
and sequential constraints. We next describe them and the
resulted debugging code in detail.

3.5.1 Logical constraint
Logical constraints are boolean expressions on register values.
For example, in an UART the DLAB bit must be set to 1 to access
the DLL and DLM registers. A violation of this constraint
indicates the programmer may have forgotten to set DLAB bit
before accessing DLL and DLM registers. Logical constraints
also help to catch hardware bugs. For example, in an Ethernet
controller the transmit overflow error bit and the transmit
underflow error bit should never be set at the same time. A
violation of this constraint indicates a hardware error.

In HAIL, we use (pre_condition) {actions} (post_condition) to
describe a logical constraint, where actions are register read and
write and the pre_condition and post_condition are the pre- and
post- assertions for the actions. For the UART example in Figure
3, there are two logical constraints
(r(DLAB) == 0) {r(RX), w(TX), rw(IER)}

(r(DLAB) == 1) {rw(DLL), rw(DLM)}

indicating that the DLAB bit needs to be 0 to access register RX,
TX, and IER and be 1 to access DLL and DLM (see the
description of register LCR in Figure 2).

3.5.2 Sequential constraint
If each read/write access to a register is viewed as an event,
sequential constraints specify the acceptable order of the events.
For example, when a NEC Ethernet controller needs to send a
command to the transceiver, it first puts the write command code
to its own command register and then puts the value into its data
register. This event sequence -- writing a write command into
command register immediately followed by writing a data into the
data register -- is the only allowed sequence to send a command
to transceiver.

In HAIL, we describe sequential constraints with a syntax
inspired by research on temporal logic [16]. Specifically, each
sequential constraint is a sequence of events connected by
sequence connectors,
event =x> event =x> … =x>event

where event is a logical constraint (i.e., access of a register with
optional pre- and post-condition) and the connector =x> can be
one of the following three:

1. A =i> B : Event A is immediately followed by event B; no
other event can occur in between.

2. A =e> B : Event A is eventually followed by event B; no
other event in the sequence can occur in between.

3. A =o>B : Event A is optionally followed by event B; no
other event in the sequence can occur in between, except for
the first event whose occurrence terminates the current
sequence and restarts the same sequence.

For the above NEC Ethernet controller example, we can express
the sequence constraint as follows;
{w(MADR)} =i> {w(MWTD)}

where w(MADR) represents the write to the command register
and w(MWTD) represents the write to the data register. The
following is a more complex example for reading codec register
in an AC97 controller.
{w(CODEC_WR)} =o>

(r(CODEC_WR_WRC)==1 && r(CODEC_RDRRDYA)==1)
{ r(CODEC_RD_RRDYD) }
(m(CODEC_WR_WADDR)== m(CODEC_RD_RADDR))

There are two events in the example: the first one is simply
setting the WR register. The second event is reading the data back
from RD register. However, two pre-conditions must satisfy: the
preceding write indicates data read command (WR_WRC==1) and
the data is ready for fetching (RDRRDYA==1). Furthermore it has a
post-condition that register offset passed in when setting WR
register (CODEC_WR_WADDR) must be the same as the register
offset read back (CODEC_RD_RADDR). The =o> connector means
that writing WR is a necessary but not sufficient predecessor to
reading RD.

3.5.3 Run-time debugging code
The HAIL compiler generates optional debugging code for both
logical and sequential constraints. In particular, for each logical
constraint the compiler inserts the pre- and post-assertion code
before and after, respectively, the corresponding register access.
For each sequential constraint the compiler generates a state
machine for the whole sequence.

At run-time, when the driver accesses a register, the debugging
code first checks the pre-conditions. It then checks all state
machines. If any machine reaches an error state, it indicates a
violation for the corresponding sequential constraint. Finally, after
accessing the register, the debugging code checks the post-
condition. The following pseudo-code illustrates the structure of
run-time debugging code.
type get_reg(){
 HAIL_ASSERT(pre);
 HAIL_CHECK_STATES();
 x = *(unsigned int*)(base + offset);
 HAIL_ASSERT(post);
 return x;
}

4. A Case Study
In this section we look at another UART example which
illustrates all four elements in HAIL specification together. We
also examine the generated code and its usage by the driver.

This UART has similar register layout as the one discussed earlier
[15] but lives in PCI IO address space. The system is a MIPS

board running in big endian mode. The OS is Linux, where PCI
IO space is mapped into the CPU virtual space at the base address
denoted by a global variable mips_io_port_base.

/* part 1: register map */
device UART {
 register_map map {

.=0x0 {
 RX;
 size=4; access=RO; read_value=volatile;

 [31:8]: reserved;
 [7:0] : RX;
 }
 }

.=0xc {
 LCR;
 size=4; access=RW;
 read_value=static;
 default_write=dont_change;

 [31:8]: reserved;
 [7] : DLAB;
 [6] : SBC;
 ...
 }
 }
}

/* part 2: address space */
address_space PCIIO {
 data_width = {1,2,4};
 endian = little;
 ...
}

address_mapping PCIIO => CPU_VIRTUAL {
 base = literal(mips_io_port_base);
 window = {0x0, 0x200000};
 endian_swapping = no;
 ...
}

/* part 3: instantiation */
instantiate myuart as UART {
 multi_instance=NO;
 reg_map => PCIIO {base=0x1000};
}

/* part 4: invariant specification */
invariant {
 (r(LCR_DLAB) == 0) {r(RX)}
}

Figure 6 - Segment of HAIL specification for UART
Figure 6 is an excerpt from the complete HAIL specification for
the UART controller. Part 1, the register map description, defines
register names, bit field names, and their accessibility (read-only,
read-write, etc). In this example we only show the definition of
RX register and the partial definition of LCR register. The RX
register is defined as being at offset 0x0 in the register map. It is 4
byte in size, it is read-only, and successive reads can return
different values (volatile). The upper 24 bits are reserved while
the lower 8 bits contains the received byte during receiving. In a
similar fashion, the LCR register is defined as being at offset 0xc,
has read/write access, static read value and a “dont_change”
default write value.

In essence, except for the “size” attribute, the attribute values
specified at register level are the default values for the bit fields
within the register (with the exception of “reserved” bit field,
obviously). For example in the case of LCR register,
default_write is an attribute for bit fields only, indicating the

value of a bit field should be preserved during the modification of
its neighboring bit fields. Specifying this attribute at the register
level gives the default values for all bit fields in LCR. If a bit
field has a different value for an attribute, it can simply re-set the
attribute following its definition (Not shown in Figure 6). In
practice, for example, it is quite common for one bit to be volatile
while the rest of the register is static.

Part 2 of the HAIL specification is the address space description.
In this example the UART controller lives in the PCI IO space, a
window of which, ranging from 0x0 to 0x20000, is mapped to
CPU virtual address space at a base address denoted by
mips_io_port_base. The total mapped region is 2MB in size. The
first part of the specification specifies the characteristics of the
PCIIO space such as supported data widths and endian-ness. The
address_mapping description captures the mapping of the PCIIO
space to the CPU virtual space. Specifically we notice that the
“endian_swapping” attribute is “no”, which indicates no endian
swapping in hardware (the host-PCI controller). Since the host is
running in big endian mode and PCI IO space is little endian, we
will need to swap the data in software when accessing PCI IO
space.

Part 3, the device instantiation, is a simple matter of associating
register maps with address spaces. In this case, a device “myuart”
is instantiated as type UART. Its attributes specify that there is to
be only one instance of the device, and that its register map is at
the base address 0x1000 in the PCI IO space.

Part 4, the invariant specification, lists a simple invariant clause:
DLAB bit must be 0 when the RX register is read. In specifying
the complete UART, we have 10 such invariant clauses. In
general simple invariants are typically derived from limitations on
register manipulations. Complex invariants are usually embedded
in device behavior models described in the device documentation.

...
#define LCR_DLAB_MASK 0x80
#define LCR_DLAB_SHIFT 0x7
#define RX_RX_MASK 0xFF
#define RX_RX_SHIFT 0x0
...
inline unsigned int get_RX(void) {
 HAIL_ASSET (get_LCR_DLAB() == 0);

return HAIL_SWAP(* (unsigned int*)
 (mips_io_port_base+0x1000-0+0)));

}
inline unsigned char get_RX_RX(void) {

unsigned int reg_val;
reg_val = get_RX();
return (reg_val & RX_RX_MASK) >>
 RX_RX_SHIFT;

}
...
inline unsigned int get_LCR(void) {

return HAIL_SWAP(*(unsigned int*)
 (mips_io_port_base+0x1000 -0+0x0c));

}
inline unsigned char get_LCR_DLAB(void) {
 unsigned int reg_val;
 reg_val = get_LCR();
 return (reg_val & LCR_DLAB_MASK) >>
 LCR_DLAB_SHIFT;
}
inline void set_LCR_DLAB(unsigned char val) {
 unsigned int reg_val;
 reg_val = get_LCR();
 reg_val = (reg_val & ~LCR_DLAB_MASK) |
((val << LCR_DLAB_SHIFT) & LCR_DLAB_MASK);

 set_LCR(reg_val);
}
...

Figure 7 - Segment of generated code for UART
Figure 7 shows a segment of the generated code for the UART.
We can see that a set of get_/set_ functions are generated for each
register and bit field. In case of get_RX(), a piece of debugging
code is generated to check the invariant condition. Such
debugging code can be turned on and off through a HAIL
compiler option. Since the host endian format is different from the
PCI IO endian format, the generated code correctly performs
swapping at appropriate places.

(before)
/* disable break condition */
serial_out(info, UART_LCR,

serial_inp(info, UART_LCR) & ~UART_LCR_SBC);

(after)

/* disable break condition */
 set_LCR_SBC(0);

Figure 8 - Serial driver using HAIL generated code
Figure 8 shows the change to one line of code in the Linux serial
driver before and after using HAIL generated code. We would
like to point out the improved clarity in the driver code.1

5. Implementation and Discussions
The HAIL compiler is written in C. The front end uses Lex and
Yacc to generate an abstract syntax tree from the HAIL
specification. The back end checks the specification (e.g., missing
bit fields) and generates C code for accessing devices, which is
used by the device driver. We next discuss some additional
features of HAIL and various error checking capabilities in HAIL.

5.1 Simplifying specification
As we discussed in Section 3, a HAIL specification is often a
straightforward and simple translation from the device and bus
documentation. To further ease the task of writing the
specification, we added the following convenience features:

• Default attributes: In the register map, users can
supply default attributes for all registers that otherwise
must be specified for individual registers.

• Shorthand: HAIL defines shorthand macros for many
commonly used attributes. For example, ro means
access=read_only.

• Macros: HAIL allows users to define macros for valid bit
field values. Using these macros improves the readability of
the driver code. In addition, HAIL automatically generates
run-time code to check for invalid write arguments and
returned read data.

5.2 Chip revision support
In embedded systems devices often evolve rapidly. For
parameter-type changes such as register stride (the default offset
between two consecutive registers), register size, bus width,

1 Note in the transformation we also lost the instance parameter,

info, because in this particular case we instantiated myuart as a
single-instance device. HAIL supports multi-instance
instantiation which can correct this problem.

HAIL already has adequate support. For register or bit field
removal, modification or addition, HAIL provides a simple
supplementary revision specification.

Figure 9 illustrates revision specification with a hypothetical
example. A new revision of the chip can inherit the register map
description from the existing revision through “derived from”
keyword. One can delete an existing register through “remove”
keyword (such as reg_X). One can add a new register through a
regular register definition (such as reg_Z). To modify an existing
register one can simply remove it and then add it back with the
same name at the same offset (such as reg_Y).

device A derived from B {
remove reg_X;
remove reg_Y;
.=off_Y {reg_Y; …}
.=off_Z {reg_Z; …}

};
Figure 9 – Illustration of revision specification in HAIL

5.3 Supporting multi-bit-field manipulation
HAIL tries to promote the separation between logical bit
manipulations from actual register accesses. Sometimes, however,
it is desirable or even mandatory to manipulate multiple bits
together. For example, we may need to disable or enable certain
interrupt bits of an interrupt mask register at the same time. To
support such multi-bit-field manipulation, the HAIL compiler
generates memory-based bit manipulation functions in addition to
the regular register access functions. The driver code then looks
like the following.
x = get_reg();
mem_set_reg_bitfield_A(&x, A_val);
mem_set_reg_bitfield_B(&x, B_val);
…
set_reg (x);

5.4 Error checking with HAIL
HAIL helps programmers catch various errors that are common in
conventional driver development. Many of these have been
discussed in the previous sections; we list them here for a
complete overview.

5.4.1 Inconsistent specification
In addition to basic syntax errors, HAIL compiler can catch
various semantic errors during HAIL specification compilation
time. For example, when we worked on a SMC91C111 Ethernet
controller, we found a potential bug in the specification: The
TXENA bit has a “volatile” read attribute and a “dont_change”
default write attribute. “dont_change” means that writing its
neighboring bits requires reading TXENA to preserve its old
value, which is impossible due to the “volatile” read attribute. In
this case, the HAIL compiler generated a warning.

In general, several kinds of inconsistencies can be present in the
HAIL specification. For example, one must not specify the
default_write attribute for a read-only register. For another
example, when an address space is mapped to CPU virtual space
through a cascading list of address spaces, all the spaces in the list
must support at least one common data width. Otherwise there is
no appropriate CPU instruction to access the device in the remote
address space.

5.4.2 Correct by void construction
Based on certain attribute values HAIL compiler may
intentionally generate void functions that simply have a “#error”
statement. If such functions are used in a driver, a C-compile
time error will happen with a detailed explanation for the error.

For example, if a register is read-only, the “set” function for this
register will be such a void function. More subtly, if a bit field
has the default_write attribute being “no_default”, all bit field
setting functions for its neighboring bit fields will be void
functions since one cannot simply set them individually.

5.4.3 Hardware state checking
For register or bit fields with fixed read values, HAIL generates
code to verify their return for each read. If any mismatch
happens, a run-time error is reported.

5.4.4 Driver parameter checking
The HAIL specification may put limitations on the values of a
register or a bit field, set either explicitly through “fixed” read
attribute or implicitly through “enum” macro definition. In either
cases the HAIL compiler generates checking code to catch any
violations during run-time.

5.4.5 Invariant checking
As discussed before, HAIL generates run-time code to check for
logical invariants and sequential invariants. Any violation will
generate a run-time error.

To implement sequential invariant checking, we recognize that
each sequential invariant in essence specifies a state transition
diagram. Each state transition diagram has an error state, which
indicates a violation of the invariant. In this sense, each invariant
corresponds to a finite state machine. At run-time we feed each
register access as an event to all the finite state machines
corresponding to all the invariant clauses. If any of them enters
the error state a run-time error is thrown; it indicates a violation of
the corresponding invariant clause.

5.4.6 Miscellaneous
HAIL can perform several other checks that does not fall into the
above categories. For example, HAIL can generate run-time code
to check whether a register map in a remote address space is
mapped within the boundaries of the mapped window.
In addition, the arguments and return values of HAIL generated
inline functions are strongly typed. Any violation of data typing
can be caught by the C compiler.

6. Experiments and Results
HAIL promises to lower development effort, to help debug code,
and to improve portability. To validate these claims, we did
various experiments on an Xscale PXA255 based development
board called Viper from Arcom. We did the experiments on both
Linux and NetBSD. Two devices were chosen as the experiment
subjects, the on-board UART serial controller [15] and the
SMC91C111 Ethernet controller [2].
We wrote the HAIL specifications for both devices from the
corresponding device documentation. The HAIL compiler
generated device access functions. We then modified the existing
drivers in Linux and NetBSD to use the HAIL-generated access

functions. In this section, we share the results and provide some
insight into the strength and possible weaknesses of HAIL.
In all test cases we observe very similar data between NetBSD
and Linux. For clarity we only show the data for Linux here.
Complete experiment data are available in [17].

6.1 Impact to development effort
Impact on the development effort is a subjective measure. We
attempt to shed some light on this topic by comparing the code
sizes and the nature of code changes in our experiments.

The following table, Table 1, shows the various source code sizes
for the Linux smc91x.c driver before and after we modified it
(based on Linux 2.4.26). All numbers are numbers of lines,
excluding comments and blank lines.

Table 1 - Size comparison

 Original
driver

HAIL
driver

size
reduction

Macro definitions 386 68 82.4%

Bit manipulations 215 108 49.8%

Driver code 1984 1474 25.7%

We were able to remove 82.4% of hand-written macro lines and
49.8% of bit manipulations. In exchange, we added HAIL
specification which has roughly the same number of lines as the
reduced macro lines. This may suggest a saving of pure
programming effort. But we believe that the HAIL specification is
a simple translation from the device documents, which should
incur less effort for the same number of lines. When chip vendor
supplies the register map description and OS vendor provides the
address space description, the saving is even more substantial.

The smc91x.c driver is used by at least ten different boards. Some
have 8-bit buses, some have 16-bit buses and others have 32-bit
buses with 4-byte register stride. We notice quite a bit of code
reduction happens in the multiple boards support area. With HAIL
multiple boards can be accommodated by modifying only the
address space description or the device instantiation.

In addition to the size reduction in macro definitions and bit
manipulations, there is also a small amount of reduction (85 lines)
in other areas. This reduction comes from more compact and
logical programming when using HAIL. For example, a typical
read-modify-set three line sequence can often be replaced with
one-line set_xxx() function in HAIL.

In our experiment we modified existing drivers. It would be a
more accurate experiment if we could develop a new driver from
scratch where we can experience the full cycle of a driver
development with HAIL. We believe in that case the reduction in
development effort will be more obvious due to the worry-free
approach of register access and bit manipulations in HAIL.

6.2 Impact on driver performance
To evaluate the performance impact of HAIL, we compare the
HAIL-based Ethernet driver with the original Linux driver. In
particular, we connect a Viper machine to a PC through a
dedicated 100base-T connection. Both machines run Linux. The

Viper machine has two versions of the Ethernet driver, the
original Linux driver and the HAIL-based driver.
We then run netperf to test TCP streaming bandwidth from Viper
to the PC. For each of the two drivers in Viper, we measure the
throughput and CPU usage of netperf in the Viper machine. Each
experiment is repeated 20 times, and we report the results with a
99% confidence interval being less than 1% of the means.

Table 2 - Performance comparison

 Original driver HAIL driver

Throughput 64.20 Mbps 64.15 Mbps

CPU usage 99.89% 99.69%

The results (Table 2) show that HAIL has minimal impact on the
Ethernet performance. The main reason is that HAIL generates
access functions as inline functions. Most modern C compilers,
such as recent versions of gcc, can generate very efficient object
code for inline functions and yield almost identical performance
as embedded code.
Nonetheless we still see a small and yet consistent degradation in
performance (about 0.1% in the example). There are two possible
reasons. First one is inherent in HAIL. When retrieving a bit field
the HAIL generated code will perform a bit shifting in addition to
bit masking to normalize the return value. Depending on the
usage of the value, the bit shifting operation may be unnecessary
in hand-crafted driver code. Second, in spite of the improvements,
compilers still lose a little performance when compiling inline
function code. That loss could well translate into the tiny
performance degradation here.
We have thought about increasing performance by aggressively
caching static register values in memory. That idea turns out to
be disappointing. While a memory read is certainly faster than a
device register read, a conditional branch checking for the validity
of caching data adds overhead. Depending on the speed
difference between reading memory and reading device registers,
there may not be any performance gain at all. In addition,
caching data could cause race conditions for registers that are
accessed in both process context and interrupt context.

6.3 Bug findings
Both UART and SMC91C111 drivers in Linux and NetBSD are
mature drivers in existence for many years. They are used by
multiple boards and have been well tested. Nevertheless, with
HAIL we still found one potential bug in both Linux and NetBSD.
Driver normally enables packet transmission by setting TXENA
bit to 1. However the device can change the bit from 1 to 0 on
error conditions. The Linux driver always set this to 1, which
could potentially discard transmission errors. The NetBSD driver
always writes back the value read from the bit, which could
accidentally disable transmission under a race condition when an
error happens.
When one develops a new device driver, we expect the bug
finding capability in HAIL to be more valuable. In that case,
HAIL can help identify misunderstanding of documents,
inconsistent or wrong documentation, hardware bugs or software
bugs in the early stage of the driver development.

6.4 Improved portability
There are two aspects of the portability of a HAIL driver: the
portability of the HAIL specification and the portability of the
driver source code. For both UART and SMC91C111 cases we
were able to use the same HAIL specification with little
modification for both NetBSD and Linux. In general we expect
only changes in address space description when the same device
is used in different OSes and systems.
We also notice that the SMC91C111 is used in many other boards
with different buses. For example, the Viper board uses 16-bit
only bus, while the Mainstone board supports 8-, 16- and 32-bit
data access. A single line change in the specification, about
bus_width attribution, would enable the same driver to be reused
for the Mainstone board.

7. Summary and Future Work
HAIL is a domain-specific language that specifies attributes
related to device access and generates device access functions for
driver to use. It promises to expedite driver development, help
identity bugs in software and hardware, and increase code
portability. HAIL attempts to do so with none or little run-time
overhead.

We like to promote its usage among driver programmers and let it
mature for practical applications. We expect the syntax and
semantics of HAIL to be expanded during this process. For
current implementation of HAIL compiler, language specification
and user guide, please visit the web site [17].

One related area which HAIL can be extended is the manipulation
of DMA descriptors. A DMA descriptor can be viewed as a
device with one register map whose instances are created
dynamically at run-time. To support this, HAIL needs to support
dynamic instances. In addition, we need to take care of some
DMA specific issues, such as cache flashing.

We are currently addressing other aspects of driver programming,
such as synchronization, buffer management, and device
modeling. Our goal is to come up with a complete set of practical
solutions for easy, correct and portable driver programming, of
which HAIL is an important part.

8. Acknowledgements
Our thanks go to Cliff Neighbours for implementing the HAIL
based drivers on NetBSD and performing various evaluation tests.

9. References
[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An

empirical study of operating systems errors," in
Proceedings of the eighteenth ACM symposium on
Operating systems principles (SOSP '01), pp. 73--88, Banff,
Alberta, Canada, 2001, ACM Press.

[2] SMSC. LAN91C111 - 10/100 Non-PCI Ethernet Single
Chip MAC + PHY. Web site:
http://www.smsc.com/main/datasheets/91c111.pdf.

[3] S. Wang and S. Malik, "Synthesizing operating system
based device drivers in embedded systems," in Proceedings
of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pp. 37-
44, Newport Beach, CA, USA, 2003, ACM Press.

[4] C. L. Conway and S. A. Edwards, "NDL: a domain-specific
language for device drivers," in Proceedings of the 2004
ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools, Washington, DC, USA, 2004, ACM
Press.

[5] S. A. Edwards, "SHIM: A Language for Hardware/Software
Integration," in Proceedings of the Synchronous Languages,
Applications, and Programming (SLAP), Edinburgh,
Scotland, April 3, 2005.

[6] F. Merillon, L. Reveillere, C. Consel, R. Marlet, and G.
Muller, "Devil: An IDL for Hardware Programming," in
Proceedings of the 4th Symposium on Operating Systems
Design and Implementation (OSDI 2000), pp. 17-30, San
Diego, CA, 2000.

[7] L. Reveillere, F. Merillon, C. Consel, R. Marlet, and G.
Muller, "The Devil language," IRISA, Rennes, France
Reserach Report 1319, 2000.

[8] Jungo Software Technologies. WinDriver and
KernelDriver. Web site: http://www.jungo.com.

[9] Compuware Corporation. DriverStudio. Web site:
http://www.compuware.com/products/driverstudio/.

[10] D. S. Rosenblum, "Towards a method of programming with
assertions," in Proceedings of the 14th international
conference on Software engineering, pp. 92--104,
Melbourne, Australia, 1992.

[11] S. H. Edwards, M. Sitaraman, B. W. Weide, and J.
Hollingsworth, "Contract-Checking Wrappers for C++
Classes," IEEE Transactions on Software Engineering, vol.
30, pp. 794--810, 2004.

[12] Coverity Inc. Coverity Prevent for C and C++. Web site:
http://www.coverity.com.

[13] Microsoft. Static Driver Verifier: Finding Bugs in Device
Drivers at Compile-Time. Web site:
http://download.microsoft.com/download/5/b/5/5b5bec17-
ea71-4653-9539-204a672f11cf/SDV-intro.doc.

[14] L. d. Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and
M. Stoelinga, "Model Checking Discounted Temporal
Properties," in Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS).

[15] Intel. Intel® PXA27x Processor Family Developer's
Manual. Web site:
http://www.intel.com/design/pca/applicationsprocesso
rs/manuals/280000.htm.

[16] A. Galton. Temporal Logic. Web site:
http://plato.stanford.edu/archives/win2003/entries/logic-
temporal/.

[17] W. Yuan and J. Sun. HAIL - Hardware access interface
language (compiler, specification, user guide and other
related information). Web site:
http://www.docomolabsresearchers-usa.com/~jsun/hail.

